Electronic Supplementary Information (ESI) for

Influence of Ge distribution on the first order magnetic transition of MnFe(P,Ge)

magnetocaloric material

Zhenlu Zhang,^a Danmin Liu,^{*a} Weiqiang Xiao,^a Hui Li,^a Shaobo Wang,^a Yuntian Liang,^a Hongguo Zhang,^b Shanlin Li,^a Junjie Fu,^a and Ming Yue^b

- ^a Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, PRC
- ^b Key Lab of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PRC

Fig. S1 Electron-density comparison for the FM phase of $MnFeP_{0.67}Si_{0.33}$ supercell with Si only filling the 2c site; (a) the (001) plane, (b) the (002) plane. The contour lines are drawn from 0.34 to 0.50 $e/Å^3$ with 0.04 $e/Å^3$ intervals.

Fig. S2 Electron-density comparison for the FM phase of $MnFeP_{0.67}As_{0.33}$ supercell with As only filling the 2c site; (a) the (001) plane, (b) the (002) plane. The contour lines are drawn from 0.34 to 0.50 $e/Å^3$ with 0.04 $e/Å^3$ intervals.

Fig. S3 Fe 3*d* and Mn 3*d* density of states for the supercell of MnFeP_{1-x}Ge_x (x = 1/6, 1/4, and 5/12) with Ge occupying the 2c site; (a) and (b) x = 1/6, (c) and (d) x = 1/4, (e) and (f) x = 5/12. The exchange splits of Fe and Mn 3*d* across the Fermi level are enhanced with increasing Ge content.

Fig. S4 Virtual FM and AFM structures for MnFeP_{1-x}Ge_x (x = 1/6, 1/4, and 1/3); (a) and (b) x = 1/6, (c) and (d) x = 1/4, (e) and (f) x = 1/6. The top and bottom rows are for the FM and AFM structures.

Fig. S5 Observed and calculated powder X-ray patterns for a coexistence state of $MnFeP_{0.74}Ge_{0.26}$ at 355 K. The high angle region is enlarged in the inset.

Fig. S6 Mn content dependence of the transition temperature determined upon heating of DSC for $Mn_yFe_{2-y}P_{0.74}Ge_{0.26}$ (y = 0.80, 0.90, 1.00, and 1.05) compounds.

Fig. S7 The heat flow upon cooling for the heat-treated and sintered samples of $MnFeP_{0.74}Ge_{0.26}$ compound.