Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supporting Information for "Comparing Alchemical and Physical Pathway Methods for Computing the Absolute Binding Free Energy of Charged Ligands"

5/10/2018

Nanjie Deng, 1* Di Cui, 2 Bin W. Zhang, 2 Junchao Xia, 2 Jeffrey Cruz, 1 Ronald Levy2

- (1) Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038
- (2) Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA
 19102

Email: nanjie.deng@gmail.com

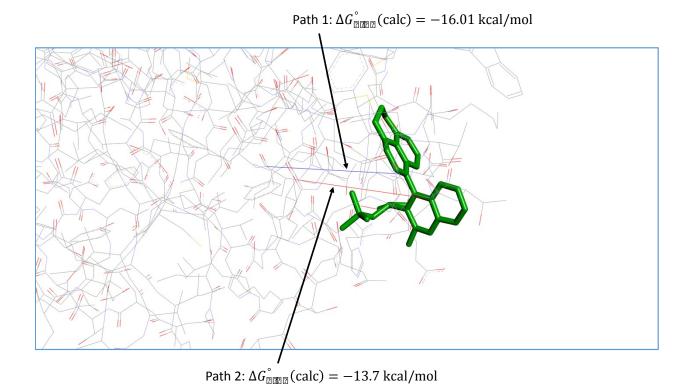


Figure S1. Two low free energy paths used in the PMF calculation of the absolute binding free energy for BI-224436.

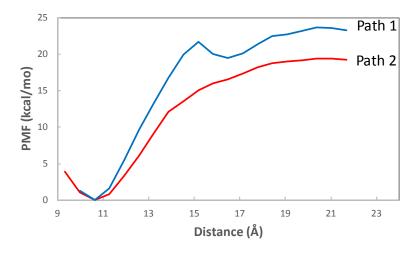


Figure S2. The PMF profiles of the two paths used in the PMF calculation for BI-224436. The error bars in the PMF are omitted for clarity.

Table S1. Meanings of the symbols used in the equations

Symbol	Meaning of the symbol
$Z_{RL,N}$	A system containing one receptor(R)-ligand(L) complex in the complexed state solvated by N water molecules.
$Z_{0,N}$	A system containing N solvent molecules.
$Z_{R,N}$	A system containing one receptor R solvated by N water molecules.
$Z_{L,N}$	A system containing one ligand L solvated by N water molecules.
$Z_{RL,N}^{V site}$	Same as $Z_{RL,N}$, except that the complexed state is defined by those configurations in which the ligand is inside the predefined binding site volume V_{site} enforced by the step function $I(\xi)$, which is implemented by a flat-bottom potential.
$Z_{R\cdots L,N}^{V_{site}}$	A solvated ligand-receptor complex, in which the ligand is coupled with the receptor and solvent, and restrained by the harmonic potential $U_{restr}(\xi)$ and the step function $I(\xi)$.
$Z_{R,N\cdots L}^{V_{site}}$	A receptor-ligand complex in which the ligand is restrained by both $I(\xi)$ and $U_{restr}(\xi)$ but its nonbonded interactions with its environment, i.e. receptor plus solvent, are turned off.
$Z_{R,N+L}^{V site}$	A receptor-ligand complex in which the ligand is not interacting with its environment but is confined to the binding site V_{site} only by the step function $I(\xi)$.
$Z_{RL(\theta,\phi,\Theta,\Phi,\Psi),N}$	A solvated complex RL in which ligand L's external degrees of freedom, which are defined by the polar angles (θ, ϕ) and three Euler angles (Θ, Φ, Ψ) , are restrained to their equilibrium values in the bound state by a set of harmonic restraints $(U_{\theta}, U_{\phi}, U_{\Theta}, U_{\Phi}, U_{\Psi})$.
$Z_{R+L(r^*,\theta,\phi,\Theta,\Phi,\Psi),N}$	A solvated system containing R and L in which L is not only subject to the polar and orientational restraints ${}^{(U_{\theta},U_{\phi},U_{\Theta},U_{\Phi},U_{\Psi})}$, but is also subject to the harmonic restraint ${}^{U_{r^*}}=\frac{1}{2}k_r(r-r^*)^2$, which forces the ligand atom A to be close to a bulk location r^* .
$Z_{P+L,N}$	A system containing the receptor R, an unbound L, and N solvent molecules.