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1) X-Ray Analysis 

 

 

Figure S1. XRD analysis
 
of MAPI powders (a) pure (natural abundance of the isotopes) (b) 

13
C, 

15
N 

enriched (20 % abundance). 

 

2) 1
H NMR 

 

Figure S2. 
1
H MAS NMR spectra of MAPbI3, recorded at different T. No significant variation of the 

chemical shifts can be detected. 

 



 

Figure S3. 
1
H T1 measurements in (

13
C,

15
N)-enriched MAPbI3. Fit of inversion recovery at different 

T. Note the nearly perfect fit with a mono exponential function with only minor deviation at T<183 K.  

 

Figure S4. Temperature dependence of 
1
H T1 in pure MAPbBr3 shown in comparison to the data in 

pure ( and (
13

C, 
15

N)-labelled MAPbI3. Note that the behaviour is very similar, while the inflection 

point is distinctly shifted to the lower temperatures. 

 

 

 

 



3) Calculation of the second moment M2 

 

The dipole-dipole interactions in solids can be quantified by the so-called second moment M2 

of the spectrum, which is defined as: 

𝑀2 =  𝑀2
𝐼𝐼 +  𝑀2

𝐼𝑆    (Eq. 1) 
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where M2
II
 and M2

IS 
are the homonuclear and the heteronuclear contributions respectively, ℏ 

is the Planck’s constant, μo is the permeability of vacuum, I and S are the nuclear spins of the 

resonating I -spins and non-resonating S-spins, respectively. NI and NS denote the numbers of 

resonating and non-resonating nuclei in the sample, I and S are the gyromagnetic ratios of 

the resonating and non-resonating spins, and rij and rjk are inter-nuclear distances. The 

theoretical equations above are specified for a completely rigid spin system and may or may 

not fully describe the specific molecular system under study. On the other hand, 

experimentally the second moment M2 of the NMR signal (for a peak of Gaussian lineshape) 

is extracted from the FWHM (𝐹𝑊𝐻𝑀 = 𝜋−1√2 ln(2) 𝑀2), therefore the experimental M2 

values are highly sensitive to internal molecular motions, and if they would substantially 

deviate from the calculated values, this would indicate the presence of intramolecular or 

intracrystalline reorientations. In this respect, variable temperature proton wide-line NMR 

experiments in solid methylammonium halides from the early 1970s form a well-documented 

set of relevant studies.
1–4

 For a hypothetical case of entirely rigid tetragonal MAPbI3, the 

calculated total second moments for CH3 and NH3 protons (1.5×10
10

 and 4.1×10
10

 rad
2
s

-2
) 

yield static linewidths of 45.7 and 75.6 kHz, respectively. In a case of internal rotation around 

the C-N axis, the second moment is reduced by a factor of F() = ¼ (3cos
2
- 1)

2
, with the 

angle  between the internuclear axis and the axis of motion.
5
 With the rotational axis 

perpendicular to all internuclear vectors the second moment is only reduced by a factor of 4. 

In contrast, as shown in Fig. 1b and Fig. S3, we measure a much narrower linewidth of about 

8 kHz coming from the overlap of CH3 and NH3 signals, corresponding to a M2 of 4.8×10
8
 

rad
2
s

-2
. This relatively low value indicates that both CH3 and NH3

+
 groups are not only 



involved in a rotation around the C-N axis, but must also undergo another reorientation with a 

symmetry axis higher than 2-fold. 

 

4) 1
H T1 relaxation time 

 

Expression of T1 relaxation time with separate contributions: 

A spin-lattice relaxation time primarily caused by dipole-dipole interactions with other 

protons can be expressed as follows in BPP formalism:
6,7
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With  and ri being the resonance frequency, motional correlation time, proton 

gyromagnetic ratio and internuclear distances, respectively. In conditions of fast motion limit 

>> 1), the equation is then reduced to  

1
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3

2
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−6
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Instead, spin-rotational relaxation time for protons can be expressed as: 

1
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2
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where I0 is moment of inertia of the molecule or group, 𝐶⊥ and 𝐶∥ are spin-rotation tensors 

describing the coupling of the nuclear and molecular angular momenta along perpendicular 

and parallel axes. Eq. 6 directly gives the peculiar inverse temperature dependence of the 

spin-rotational relaxation. 

 

T1 relaxation time with MAS and in the rotating frame (T1): 

As shown in Fig. S5a, when separating the CH3 and NH3 contributions from the 
1
H NMR 

spectra using MAS and recording the respective relaxation times we obtained, as expected, 

very similar values. This is in an agreement with the considerations made in the main text 

regarding the behavior of MA-cation as a symmetrical rotor showing no preferential 

interaction of the CH3 and NH3 groups with the inorganic framework. We also note (Fig. 



S5a), that at the higher temperatures the spinning induces a deviation from the monotonous 

behavior, which we are presently unable to explain. This is one of the reasons why we chose 

to measure the relaxation time under stationary conditions. A similar behavior is visible for 

13
C T1 times under MAS conditions (Fig. S6). 

The results on protons spin-lattice relaxation time in the rotating frame T1 at two spin-

locking radio-frequency fields (RF) are shown in Fig. S5b. While the obtained magnitude of 

the T at the higher RF on the order of tens of milliseconds suggests the cross-polarization 

(CP) to 
13

C and 
15

N to be an attractive proposition, a very long T1 of protons efficiently wipes 

out the possible benefits of the cross-polarization experiments. For this reason, we used the 

direct excitation to collect both 
13

C and 
15

N NMR data presented in the main text. 

 

Figure S5. Temperature dependence of (a) 
1
H T1 in pure MAPbI3 under 10 kHz MAS. (b) 

1
H Spin-

lattice relaxation time in the rotating frame (T1) at spin-locking radio-frequency fields of 15 

and 50 kHz, as measured in a spin-locking experiment by varying the time of spin-lock. 

  



5) 13
C and 

15
N spectra and T1 relaxation time 

 

Expression of T1 relaxation time with separate contributions: 

1

𝑇1
13𝐶 =

1

𝑇1
𝐷𝐷 +

1

𝑇1
𝐶𝑆𝐴 +

1

𝑇1
𝑆𝑅 .       (Eq. 7) 

Where DD interactions refer primarily to C-H coupling. The full expressions for each of the 

three mechanisms above in the fast motion limit are given as follows:
48,51

 

1

𝑇1
𝐷𝐷 = 𝛾13𝐶

2 𝛾1𝐻
2 ℏ2 ∑ 𝑟𝑗

−6
𝑗 𝜏𝑟 = 𝐶1(𝑟)𝜏𝑟,     (Eq. 8) 

1

𝑇1
𝐶𝑆𝐴 =

6

45
𝜔13𝐶

2 (Δσ)𝜏𝑟 = 𝐵𝜏𝑟,`      (Eq. 9) 

1

𝑇1
𝑆𝑅 =

4𝜋2𝐼0
2

9ℏ2
(2𝐶⊥

13𝐶 + 𝐶∥
13𝐶)𝜏𝑟

−1,      (Eq. 10) 

where nd rj being the 
13

C Larmor frequency, motional correlation time, 

gyromagnetic ratio, anisotropy of shielding (σ‖ - σfor axially symmetric molecules in a solid 

spectrum without internal rotations)and proton-carbon internuclear distances, respectively. 

One should note that the rotational correlation times for 
13

C and 
1
H can be related, but 

generally do not coincide. 

 
Effect of MAS on T1 in 

13
C and 

15
N 

Our preliminary experiments indicated that 
13

C spin-lattice relaxation times have been to a 

certain degree affected by the sample spinning in MAS. This effect was similar, although in a 

smaller magnitude, to that previously reported for spin-lattice relaxation of 
207

Pb in PbI2 and 

PbBr2,
8
 and was attributed to a MAS-assisted cross-relaxation of a spin 1/2 nucleus to a 

strongly quadrupolar nucleus. The effect is not observable for protons due to a very high 

difference in the Larmor frequencies between 
127

I and 
1
H (> 300 MHz at the used field of 9.4 

T). The situation is different for 
13

C and 
127

I because the difference in their Larmor 

frequencies is only ∼20 MHz, and since the quadrupole constant of 
127

I in MAPbI3 is > 550 

MHz,
9
 the nuclear energy levels of 

13
C will inevitably cross under MAS with greatly spread 

quadrupolar interactions in 
127

I. This becomes evident when comparing the T1s measured 

under MAS or stationary conditions as shown in Fig. S6. 

 



 
Figure S6. Temperature dependence of 

13
C T1 in pure MAPbI3 with and without 5 kHz MAS.  

 
 
13

C and 
15

N MAS spectra as a function of temperature 

 

Figure S7. Temperature dependence of (a) 
13

C and (b) 
15

N MAS spectra in (
13

C, 
15

N)-enriched 

MAPbI3. In the tetragonal and cubic phase (233-353 K), the chemical shift trend behaves as expected, 

while a discontinuity is present in the orthorhombic phase (153 K). Unless specified, spinning was 5 

kHz. 

 

 

 

 

 



6) 14
N NMR: DFT calculations 

 

 

Figure S8. Structure of  MAPbI3 (a) before and (b) after the DFT MD simulations. Note that the 

lattice parameters are fixed, while the MA orientation and position varies. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1. 
14

N NMR parameters in methylammonium cations as calculated in a 3x3x3 supercell of 

MAPbI3 after a molecular dynamic simulation run for 1 ps 270 K with DFT CASTEP code (ZORA 

pseudopotentials).  

       Asymmetry   Isotropic   Span  Skew 

Filename Atom(#)  
Q
/MHz 

parameter 


Q
 

shielding  


iso

 /ppm /ppm 

   N(1) -0.66 0.63 185.2 21.1 0.34 

   N(2) 0.75 0.35 195.7 17.1 -0.24 

   N(3) 0.85 0.35 188.5 20.2 0.31 

   N(4) 0.70 0.56 188.1 11.2 -0.61 

   N(5) 0.60 0.55 190.9 14.8 -0.59 

   N(6) 0.61 0.72 190.5 22.1 0.49 

   N(7) 0.70 0.45 196.7 12.0 -0.11 

   N(8) 0.61 0.75 190.9 19.2 -0.53 

   N(9) 0.74 0.29 195.3 12.7 -0.35 

   N(10) 0.69 0.33 192.1 20.1 -0.31 

   N(11) 0.69 0.75 189.1 16.0 0.09 

   N(12) 0.61 0.50 190.7 12.0 0.05 

   N(13) 0.81 0.55 193.9 11.8 -0.11 

   N(14) 0.78 0.36 196.0 7.3 0.64 

MAPbI3 icsd 

250735 3x3 

SuperCell  N(15) 0.61 0.56 190.8 23.1 0.43 

   N(16) -0.44 0.91 195.0 8.4 -0.66 

   N(17) 0.85 0.38 186.5 24.6 -0.47 

   N(18) 0.75 0.08 197.1 12.5 -0.40 

   N(19) 0.69 0.35 196.7 14.7 -0.03 

   N(20) 0.73 0.25 192.5 14.6 -0.36 

   N(21) 0.48 0.89 186.5 37.7 -0.21 

   N(22) 0.40 0.31 191.4 15.1 -0.57 

   N(23) 0.74 0.39 193.7 17.6 0.71 

   N(24) 0.71 0.56 192.4 13.4 -0.05 

   N(25) 0.74 0.70 193.4 10.6 0.19 

   N(26) 0.62 0.81 192.3 17.4 0.08 

   N(27) 0.85 0.62 189.4 12.9 0.45 

Average absolute 

values:   0.68 0.52 191.9 16.3 -0.07 

 

  



7) 207
Pb NMR: DFT calculations 

 

Table S2. 
207

Pb DFT CASTEP (ZORA) results in lead compounds for geometry optimized structures. 

  Calculated Shielding parameters Experimental isotropic 

chemical shift (from Ref. 
10

) 

Compound ICSD # iso, ppm , ppm  iso , ppm from PbMe4 

Pb(NO3)2 62698 9763.07 -151.34 0 -3454 

 174004 9768.89 -181.8 0 -3454 

PbCl2 202130 8609.98 217.13 0.43 -1717 

PbBr2 202134 8291.92 260.66 0.55 -979 

PbO (Red) 15466 7153.28 868.64 0 1939 

 15466 7153.28 868.64 0 1930 

 15466 7153.28 868.64 0 1949 

PbO (Yellow) 60135 7310.25 960.62 0.41 1527 

 653900 7305.63 961.86 0.41 1527 

 99776 7127.54 915.88 0 1527 

Pb2SnO4    SI 31482 7651.29 782.01 0.71 798 

Pb2SnO4    SII 31482 7675.21 812.94 0.74 662 

PbCO3 36554 9310.49 685.24 0.27 -2630 

 36554 9310.49 685.24 0.27 -2622 

PbSO4 92609 9881.83 485.79 0.29 -3613 

PbC2O4 109830 8895.76 257.29 0.16 -1642 

 109830 8895.76 257.29 0.16 -1659 

PbSiO3 SI 250220 8256.85 517.23 0.11 93 

              SII 250220 8386.41 620.67 0.22 -166 

              SIII 250220 8457.58 384.32 0.65 -366 

Pb3(PO4)2   SI 92582 9163.35 -259.65 0.9 -2886 

Pb3(PO4)2   SII 92582 9023.33 -651.67 0.69 -2016 

 14247 9315.19 -98.52 0.71 -2886 

 14247 9238.85 628 0.65 -2016 

PbMoO4 26784 9064.31 -116.74 0.06 -2004.9 

 89034 9066.1 -112.13 0.07 -2004.9 

PbTiO3 61168 8996.69 269.28 0 -1408 

PbZrO3    SI 150699 8831.1 240.01 0.34 -1340 

PbZrO3    SII 150699 8656.26 -475.09 0.95 -1000 

 

 

 

 

 



8) 127
I NQR  

 

Analysis of the temperature dependent NQR frequencies 

 

Figure S9.  Temperature dependence of the 
127

I NQR frequencies. Phase transition is visible at 327 K (blue 

line). Note the appreciable temperature dependence even after transition into the cubic phase. 

 

The expressions for the temperature dependence of the NQR frequencies (Fig. S9) are similar 

to those previously derived by Ramakrishna:
11
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       (Eq. 12) 

The equations above assume an axially symmetric situation, i.e. when Q ≈ 0.0, which is 

entirely valid for MAPbI3, particularly in the cubic phase. We can therefore fit the 

appreciable temperature dependence observed after phase transition with these equations, and 

extract a torsional frequency νt ≈1.15 THz (≈38 cm
-1

). 

 



Expressions for the correlation time of the torsional vibrations 

The Bayer theory
12

 of spin-lattice relaxation in NQR state that the temperature dependence of 

the T1Q can provide an accurate estimate of the correlation time a of the rotational (torsional) 

vibrations. For a nucleus with spin 3/2 there is a single resonance transition that is uniquely 

described by a single relaxation time. This case has been extensively studied, and numerous 

experimental confirmations of the theory exist in the literature.
13

 For a spin 5/2 nucleus, 

however, the situation is not as straightforward, since the 2 resonance transitions have 2 

different relaxation times, and in a general case the probabilities of transitions are not 

independent. For such a case, no closed form solution has yet been found.
14

 However, if the 

temperature is not too low (in most situations > 20 K), the relaxation is mainly defined by the 

transitions |m|=2, and the contribution of transitions with |m|=1 is negligibly small.
12,14

 In 

a special case of Q=0 and at sufficiently high temperatures, the expressions for pure NQR 

spin-lattice relaxation in spin 5/2 nucleus can be written as:
15
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with 𝜈1 =
3

10
𝑒𝑄𝑞𝑧𝑧  ,  𝜈2 =

3

20
𝑒𝑄𝑞𝑧𝑧  and 𝑥 =

ℎ𝜈𝑡

𝑘𝑇
 . 

Here t is the frequency rotational vibrations, J1 is the moment of inertia of the rotating part, 

and Q is the the frequency of the NQR in the absence of lattice vibrations, i.e. extrapolation 

to zero temperature. Evaluation of the correlation time a can be easily done from the ratios 

of the experimental values of T1Q for different transitions: 
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       (Eq. 15) 
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