Vibronic relaxation energies of acene-related molecules upon excitation or ionization – electronic supplement

Marcin Andrzejak^{*a*,†} and Piotr Petelenz^{*a*}

^a Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland

1. Comparison of the CC2 results with the results of alternative calculations.

Table S1.1 Reorganization energies for anthracene and 2-2'-bithiophene calculated using a series of three correlation-consistent basis sets of increasing size. Values in parentheses refer to the reorganization energy for transitions that occur in the reversed direction with respect to that given in column 1.

	ŧ	anthracene	9		3 T		6Т			
	cc-pVDZ	aug-cc- pVDZ	cc-pVTZ	cc-pVDZ	aug-cc- pVDZ	cc-pVTZ	cc-pVDZ	aug-cc- pVDZ	cc-pVTZ	
gr. st. →	852	850	877	1387	1205	1351	1316	1188	1288	
anion	(825)	(786)	(850)	(1381)	(1215)	(1347)	(1369)	(1237)	(1338)	
gr. st. \rightarrow cation	523	481	532	1448	1362	1437	1435	1323	1441	
	(514)	(481)	(515)	(1437)	(1333)	(1424)	(1503)	(1441)	(1502)	
$\begin{array}{c} anion \rightarrow \\ S_1 \end{array}$	278 (269)	261 (272)	293 (284)	594 (589)	612 (591)	636 (629)	346 (341)	334 (353)	(355)	
$\begin{array}{c} \text{cation} \rightarrow \\ S_1 \end{array}$	457	489	492	347	302	352	208	183	202	
	(440)	(442)	(473)	(345)	(300)	(336)	(205)	(175)	(199)	
$\begin{array}{c} \text{anion} \rightarrow \\ T_1 \end{array}$	612	568	624	892	871	933	549	537	594	
	(624)	(595)	(633)	(911)	(876)	(947)	(569)	(592)	(609)	
$\begin{array}{c} \text{cation} \rightarrow \\ T_1 \end{array}$	764	782	805	722	681	743	457	431	475	
	(779)	(753)	(809)	(738)	(683)	(758)	(484)	(445)	(498)	
$\begin{array}{c} \text{gr. st.} \rightarrow \\ S_1 \end{array}$	1705	1661	1784	2101	1997	2160	1916	1737	1929	
	(1570)	(1524)	(1641)	(1873)	(1776)	(1922)	(1745)	(1618)	(1739)	
$S_1\!\rightarrow T_1$	157	137	147	205	204	212	151	155	167	
	(179)	(152)	(165)	(232)	(235)	(239)	(193)	(198)	(212)	
$\begin{array}{c} \textbf{gr. st.} \rightarrow \\ \textbf{T}_1 \end{array}$	2310	2229	2393	2989	2854	3084	2473	2342	2568	
	(2265)	(2158)	(2331)	(2976)	(2813)	(3042)	(2643)	(2532)	(2711)	

[†] Author to whom correspondence should be addressed. Electronic mail: andrzeja@chemia.uj.edu.pl

Figure S1.1 Comparison of reorganization energies for the electronic transitions/ionization processes under study calculated for selected compounds using the CC2 method with the cc-pVDZ, aug-cc-pVDZ and cc-pVTZ basis sets.

Table S1.2: Reorganization energies [in cm⁻¹] based on the CASPT2 calculations with the cc-pVDZ basis set. Values in parentheses refer to the reorganization energy for transitions that occur in the reversed direction with respect to that given in column 1.

	f3T	f4T	f3cp	f30	f4O
gr. st. → anion	1299 (1290)	1241 (1239)	1349 (1285)	1725 (1669)	1590 (1580)
gr. st. → cation	1404 (1370)	1399 (1327)	1316 (1221)	1295 (1254)	1375 (1292)
anion \rightarrow S ₁	х	703 (695)	876 (774)	х	х
$\begin{array}{c} \text{cation} \rightarrow \\ S_1 \end{array}$	х	753 (495)	428 (357)	х	х
$\begin{array}{c} \text{anion} \rightarrow \\ T_1 \end{array}$	1072 (1011)	1051 (940)	1181 (1172)	1062 (1075)	1111 (1135)
$\begin{array}{c} \text{cation} \rightarrow \\ T_1 \end{array}$	963 (897)	920 (807)	1061 (1074)	1302 (1311)	554 (789)
$\begin{array}{c} \text{gr. st.} \rightarrow \\ S_1 \end{array}$	Х	2117 (1915)	2531 (2171)	Х	х
$S_1\!\rightarrow T_1$	Х	281 (413)	517 (609)	Х	х
$\begin{array}{c} \text{gr. st.} \rightarrow \\ T_1 \end{array}$	3131 (3027)	2836 (2834)	4104 (3783)	3551 (3423)	3246 (3208)

Compositions of the active spaces (number of orbitals of a given symmetry/number of active electrons): f3T: $6b_15a_2/14$, no convergence for the S_1 state

f4T: $7b_g 6a_u/14$, geometry convergence for the S_1 state required state-averaging at the CASSCF step over 3 1B_u states, followed by state-specific CASPT2

f3cp: $6b_15a_2/14$ for S_1 : geometry convergence for the S_1 state required state-averaging at the CASSCF step over 2 ${}^{1}B_1$ states, followed by state-specific CASPT2

f3O: $7b_16a_2/14$, no convergence for the S_1 state

f4O: $6b_g 6a_u/14$, no convergence for the S_1 state

⁺ Failed convergence of the CASPT2 calculations was caused by energetic proximity of higher lying singlet states of the same symmetry as the lowest singlet state (whose geometry is being optimized) – their mixing with the its wavefunction leads to large rotations between the active/virtual subspaces that strongly depend on molecular geometry, which eventually results in instability of the calculations. This behavior might be attenuated for active spaces that accommodate all the orbitals important for all structures sampled in the process of geometry optimizations, but for such large active spaces geometry optimizations at the CASPT2 level of theory are completely unfeasible.

Figure S1.2 Comparison of reorganization energies for the electronic transitions/ionization processes under study calculated for selected compounds by CC2 and CCSD methods using the cc-pVDZ basis set.

On average, the difference between the CASPT2 and CC2-based results is 20.4 cm⁻¹. The mean unsigned error is 103.4 cm⁻¹, which is 9% of the average CC2-based value.

Table S1.3: Reorganization energies [in cm⁻¹] at the CCSD/cc-pVDZ level of theory for the selected hydrocarbons and heterocyclic compounds. Values in parentheses refer to the reorganization energy for transitions that occur in the reversed direction with respect to that given in column 1.

	antracene	tetracene	Зср	f3cp	f4cp	f5cp
gr. st. \rightarrow anion	1008 (960)	879 (856)	1518 (1573)	1625 (1651)	1661 (1725)	1698 (1805)
gr. st. → cation	748 (736)	675 (656)	1652 (1712)	1568 (1554)	1658 (1661)	1739 (1770)
$\begin{array}{c} \text{anion} \rightarrow \\ S_1 \end{array}$	323 (315)	275 (266)	447 (447)	612 (621)	517 (523)	444 (447)
$\begin{array}{c} \text{cation} \rightarrow \\ S_1 \end{array}$	469 (455)	390 (379)	311 (319)	447 (459)	366 (376)	308 (317)
anion \rightarrow T ₁	741 (786)	758 (797)	1204 (1313)	1394 (1465)	1342 (1425)	1300 (1398)
$\begin{array}{c} \text{cation} \rightarrow \\ T_1 \end{array}$	879 (923)	857 (893)	1066 (1162)	1327 (1423)	1241 (1352)	1181 (1308)
$\begin{array}{c} \text{gr. st.} \rightarrow \\ S_1 \end{array}$	2084 (1981)	1743 (1621)	2565 (2324)	2939 (2699)	2745 (2468)	2622 (2323)
$S_1 \rightarrow T_1$	205 (236)	235 (265)	608 (801)	657 (811)	677 (882)	709 (976)
$\begin{array}{c} \textbf{gr. st.} \rightarrow \\ T_1 \end{array}$	2866 (2971)	2654 (2687)	4400 (4956)	4930 (5175)	4827 (5210)	4762 (5322)

Hydrocarbons:

Heterocyclic compounds:

	f3T	f4T	3Т	f3O	f4O	30
$\begin{array}{c} \text{gr. st.} \rightarrow \\ \text{anion} \end{array}$	1491 (1501)	1432 (1448)	1419 (1452)	1885 (1919)	1816 (1861)	1628 (1651)
gr. st. \rightarrow cation	1625 (1615)	1588 (1579)	1718 (1754)	1566 (1523)	1643 (1602)	1662 (1709)
anion \rightarrow S ₁	817 (812)	723 (711)	669 (660)	590 (589)	555 (552)	513 (507)
$\begin{array}{c} \text{cation} \rightarrow \\ S_1 \end{array}$	504 (502)	454 (450)	348 (344)	769 (775)	679 (685)	452 (448)
$\begin{array}{c} \text{anion} \rightarrow \\ T_1 \end{array}$	1154 (1192)	1057 (1086)	1056 (1098)	1177 (1218)	1103 (1141)	933 (980)
$\begin{array}{c} \text{cation} \rightarrow \\ T_1 \end{array}$	1106 (1149)	959 (994)	932 (974)	1614 (1675)	1387 (1439)	1101 (1149)
$\begin{array}{c} \text{gr. st.} \rightarrow \\ S_1 \end{array}$	2629 (2432)	2482 (2296)	2528 (2330)	2370 (2146)	2354 (2129)	2571 (2369)
$S_1 \rightarrow T_1$	234 (261)	172 (193)	285 (324)	431 (500)	347 (406)	307 (358)
$\begin{array}{c} \mathbf{gr. st.} \rightarrow \\ \mathbf{T}_1 \end{array}$	3683 (3807)	3426 (3562)	3623 (3830)	4147 (4258)	3955 (4086)	3841 (4080)

Figure S1.3 Comparison of relaxation energies for the electronic transitions/ionization processes under study calculated for selected compounds by CC2 and CCSD methods using the cc-pVDZ basis set.

The CCSD results are generally higher than the CC2 ones. The average difference between the CCSD and CC2-based reorganization energies is 277 cm⁻¹, while the mean unsigned error is 283 cm⁻¹, which is 17.9% with respect to the average CC2-based value.

Table S1.4 Reorganization energies for pentacene calculated using CC2 (with two different correlation consistent basis sets) and DFT/TDDFT with the B3LYP exchange-correlation functional and def2-TZVPP basis set. Values in parentheses refer to the reorganization energy for transitions that occur in the reversed direction with respect to that given in column 1.

	CC2/ cc-pVDZ	CC2/ cc-pVTZ	B3LYP/ def2-TZVPP
gr. st. \rightarrow anion	565 (541)	577 (553)	539 (552)
gr. st. \rightarrow cation	362 (342)	362 (340)	385 (395)
anion $\rightarrow S_1$	161 (156)	171 (165)	266 (266)
$cation \rightarrow S_1$	268 (260)	286 (278)	356 (356)
anion $\rightarrow T_1$	515 (522)	514 (518)	604 (597)
cation $\rightarrow T_1$	583 (585)	600 (601)	654 (646)
gr. st. \rightarrow S ₁	930 (828)	974 (866)	1182 (1188)
$S_1\!\rightarrow T_1$	184 (204)	169 (187)	130 (133)
gr. st. \rightarrow T ₁	1571 (1481)	1603 (1503)	1784 (1770)

2. Bond length correlations

Figures S2.1 and S2.2 show the calculated lengths of the CC bonds [in Å] for hexaphenyl and sexithiophene ions plotted against the respective lengths in the a) ground state and b) S1 state of the corresponding neutral molecule. It is readily seen that the electronic structure of the ions closely resembles that of the molecule in the excited state, but not in the ground state. Note that much larger differences between the bond lengths of the ions and for the ground state are observed for 6T, which demonstrate the influence of heteroatoms on the molecular geometries in different electronic states.

Figure S2.1 Bond lengths [in Å] of the hexaphenyl ions along the carbon skeleton of the molecule against the respective bond lengths of the ground and excited states of 6Ph. The linear regression coefficients r² for the cation and the anion vs the ground state are equal to 0.81 and 0.76, respectively. The analogous coefficients with respect to the S1 state are equal to 0.90 and 0.93

Figure S2.2 Bond lengths [in Å] of the sexithiophene ions along the carbon skeleton of the molecule against the respective bond lengths of the ground and excited states of 6T. The linear regression coefficients r² for the cation and the anion vs the ground state are equal to 0.04 and 0.13, respectively. The analogous coefficients with respect to the S1 state are equal to 0.94 and 0.84

3. Comparison of the relaxation energies upon singlet and triplet excitation

Oligoacenes

Table S3 clearly shows that the relaxation energy for the singlet-to-triplet transition is marginal with respect to those for singlet or triplet excitation from the ground state.

Table S3. Relaxation energies [in cm⁻¹] for singlet ($\Lambda^{g \to S1}$) and triplet ($\Lambda^{g \to T1}$) excitation, and for the singlet to triplet transition ($\Lambda^{S1 \to T1}$).Values in parentheses refer to the reorganization energy for transitions that occur in the reversed direction with respect to that given in column 1.

	antracene	tetracene	pentacene	hexacene
gr. st. \rightarrow S ₁	1705 (1570)	1252 (1132)	930 (828)	692 (610)
$S_1 \rightarrow T_1$	157 (179)	171 (188)	184 (204)	192 (213)
gr. st. \rightarrow T ₁	2310 (2265)	1898 (1820)	1571 (1481)	1298 (1206)

Oligophenyls

	4Ph	5Ph		6				
gr. st. \rightarrow S ₁	2276 (2133)	2131 (2020	0)	2040 (19	968)	1955	(1922)	
$S_1 \rightarrow T_1$	88 (100)	74 (85)		66 (79	9)	67	(82)	
gr. st. \rightarrow T ₁	2669 (2800)	2440 (2592	2)	2245 (24	426)	2081	(2304)	
Oligocyclopent	adienes (<i>n</i> -cpds)	and fused olig	ocyc	lopentadier	1es (f <i>n-</i>	cpds)		1
	f3-cpd	f4-cpd		2-cpd	3-	cpd	4-cp	d
gr. st. \rightarrow S ₁	2581 (2322)	2265 (1946)	26	91 (2475)	2579	(2300)	2105 (1	718)
$S_1\!\rightarrow T_1$	480 (598)	567 (767)	5	07 (605)	493	(675)	584 (9	72)
gr. st. \rightarrow T ₁	4114 (4111)	4004 (4047)	40	21 (4063)	3744	(3920)	3732 (4	233)
Oligothophene	s				I			
	2T	3 T		4 T	4	5T	6Т	
gr. st. \rightarrow S ₁	2562 (2351)	2101 (1873)	19	61 (1736)	1923	(1719)	1916 (1	745)
$S_1 \rightarrow T_1$	303 (309)	205 (232)	1	89 (226)	167	(205)	151 (1	93)
gr. st. \rightarrow T ₁	3430 (2419)	2989 (2976)	27	65 (2813)	2602	(2710)	2473 (2	2643)
Oligofurans					1			
	20	30		40	4	50	60)
gr. st. \rightarrow S ₁	2691 (2475)	2319 (2088)	22	19 (2000)	2190	(2005)	2168 (2	2031)
$S_1 \rightarrow T_1$	280 (290)	218 (250)	1	88 (228)	166	(207)	156 (2	203)
gr. st. \rightarrow T ₁	3722 (3726)	3281 (3319)	28	42 (3022)	2842	(3022)	2680 (2	.933)
Fused oligothic	phenes							
	f3T	f4T		f5T		f	6T	
gr. st. \rightarrow S ₁	2224 (2040)	1983 (181	0)	1879 (10	599)	1785	(1609)	
$S_1 \rightarrow T_1$	178 (198)	141 (156))	115 (12	29)	107	(121)	
gr. st. \rightarrow T ₁	3087 (3083)	2805 (2793	3)	2620 (20	511)	2482	(2478)	
Fused oligofura	ans			1				
	f30	f4O		f5O		fe	60	
gr. st. \rightarrow S ₁	2110 (1891)	2026 (1804	4)	1974 (1	752)	1928	(1702)	
$S_1 \rightarrow T_1$	344 (396)	273 (319))	241 (28	82)	232	(274)	
gr. st. \rightarrow T ₁	3529 (3525)	3316 (331:	5)	3186 (3	192)	3092		

4. Duschinsky rotations among the totally symmetric normal modes of pentacene

S1/g r	264	617	648	764	797	1019	1186	1209	1333	1410	1433	1497	1558	1576
262	1.0													
613		-0.96												
628			-0.96											
757				1.0										
804					1.0									
1048						-0.99								
1183							-0.99							
1221								-0.99						
1312									-0.87	-0.32	0.35			
1382									-0.38		-0.85			
1426										0.93				
1511												0.88		-0.33
1536													-0.94	
1578												0.34		0.88

Table S4. The Duschinsky matrices for all the studied transitions of pentacene obtained in B3LYP/def2-TZVPP calculations. For the sake of clarity the values smaller than 0.1 have been omitted.

+/gr	264	617	648	764	797	1019	1186	1209	1333	1410	1433	1497	1558	1576
263	1.0													
615		1.0												
639			-1.0											
764				1.0										
805					-1.0									
1040						1.0								
1198							0.99							
1221								0.99						
1330									-0.96					
1409											-0.93			
1426										-0.93				
1510												0.95		
1551													0.90	0.35
1578													-0.40	0.88

-/gr	264	617	648	764	797	1019	1186	1209	1333	1410	1433	1497	1558	1576
263	1.0													
617		1.0												
640			1.0											
755				-0.99										
796					0.99									
1033						-1.0								
1171							1.0							
1210								1.0						
1310									0.96					
1391										0.36	-0.88			
1410										0.90	0.39			
1498												0.96		
1535													0.95	
1563														-0.94

T1/gr	264	617	648	764	797	1019	1186	1209	1333	1410	1433	1497	1558	1576
261	-1.0													
613		-0.93	0.36											
631		0.36	0.93											
755				-0.98										
807					-0.97									
1051						-0.99								
1183							0.98							
1216								0.97						
1271									0.86	0.36				
1358											-0.85			0.35
1435									0.37	-0.89				
1496												0.68	-0.54	-0.33
1535												-0.61	-0.77	
1592														-0.87

+/S1	262	613	628	757	804	1048	1183	1221	1312	1382	1426	1511	1536	1578
------	-----	-----	-----	-----	-----	------	------	------	------	------	------	------	------	------

263	1.0													
615		-0.98												
639			0.98											
764				-1.0										
805					1.0									
1040						-1.0								
1198							-1.0							
1221								1.0						
1330									0.96					
1409										0.94				
1426											-0.97			
1510												0.98		
1551													-0.95	
1578														0.96

-/S1	262	613	628	757	804	1048	1183	1221	1312	1382	1426	1511	1536	1578
263	-1.0													
617		-0.98												
640			-0.98											
755				1.0										
796					-1.0									
1033						1.0								
1171							-1.0							
1210								1.0						
1310									-0.97					
1391										0.90	0.34			
1410										-0.34	0.93			
1498												0.96		
1535													-0.97	
1563														-0.98

T1/S1	262	613	628	757	804	1048	1183	1221	1312	1382	1426	1511	1536	1578
261	1.0													

613	0.99												
631		-1.0											
755			0.99										
807				0.99									
1051					1.0								
1183						-1.0							
1216							0.98						
1271								-0.97					
1358									0.99				
1435										-1.0			
1496											0.92	0.36	
1535											-0.37	0.93	
1592													-1.0

5. Sensitivity of Franck-Condon parameters for excited state ionization to consistency of input data

Table S5 demonstrates the importance of consistency in evaluation of FC parameters for ionization from the excited state. The pertinent $b^{S1\to\pm}$ values are deduced from the corresponding FC parameters for singlet excitation and ground-state ionization. The FC parameters for ground state ionization being fixed at their values from TDDFT calculations, in some modes the change of the FC parameter for singlet excitation from its TDDFT value to that obtained from the CC2 method changes the resultant $b^{S1\to\pm}$ parameter by a factor of 2 to 5.

Table S5. Franck-Condon parameters $b^{S1\to\pm}$ for ionization of a singlet-excited pentacene molecule, calculated from Eq.(1) as the differences between the corresponding values for singlet deexcitation to ground state ($b^{S1\to g}$) and for transitions from ions to the ground state ($b^{\pm\to g}$), based on consistent and inconsistent input. Columns 1-6 are consistent TDDFT values, whereas the resultant $b^{S1\to\pm}$ values from columns 8, 9 are derived from the CC2 singlet excitation $b^{S1\to g}$ values (column 7) by subtracting the $b^{+\to g}$ or $b^{-\to g}$ of TDDFT origin.

Freq.	$h^{+ ightarrow g}$	$h^{S1 \rightarrow +}$	$h^{\rightarrow g}$	$h^{S1 \rightarrow -}$	$h^{S1 \rightarrow g}$	$h^{S1 \rightarrow g}$	$h^{Sl \rightarrow +}$	$h^{S1 \rightarrow -}$
[cm ⁻¹]	0	0		U	U	U		0
	DFT	DFT	DFT	DFT	DFT	CC2	CC2/DFT	CC2/DFT
264	0.262	-0.928	-1.063	0.397	-0.666	-0.647	-0.909	-0.416
617	0.00	-0.221	-0.300	0.079	-0.221	-0.128	-0.128	0.172
648	0.00	-0.049	-0.034	-0.015	-0.049	-0.044	-0.044	-0.010
764	-0.063	-0.280	-0.161	-0.182	-0.343	-0.294	-0.231	-0.133
797	0.089	0.043	0.116	0.016	0.132	0.059	-0.030	-0.057
1019	-0.117	-0.057	-0.068	0.106	-0.174	-0.095	-0.022	-0.027
1186	0.164	0.171	0.209	0.126	0.335	0.273	0.109	0.064
1209	0.325	0.251	0.347	0.229	0.576	0.361	0.036	0.014
1333	0.027	0.062	0.040	0.049	0.089	0.151	0.124	0.111
1410	-0.393	-0.330	-0.457	-0.266	-0.723	-0.514	-0.121	-0.057
1433	0.157	0.230	0.280	0.107	0.387	-0.588	-0.431	-0.308
1497	0.059	0.068	0.090	0.037	0.127	0.163	0.194	0.073
1557	-0.422	-0.124	-0.194	-0.352	-0.546	-0.398	0.024	-0.204
1576	-0.147	-0.115	-0.120	-0.142	-0.262	-0.113	0.034	0.007

6. Complete set of reorganization energies for all the studied oligomers

Table S6. Reorganization energies [in cm⁻¹] for all the studied systems calculated at the CC2/cc-pVDZ level of theory. Values in parentheses refer to the reorganization energy for transitions that occur in the reversed direction with respect to that given in column 1.

	antracene	tetracene	pentacene	hexacene
gr. st. \rightarrow anion	852 (825)	691 (666)	565 (541)	462 (442)
gr. st. \rightarrow cation	523 (514)	439 (419)	362 (342)	293 (274)
anion $\rightarrow S_1$	278 (269)	209 (202)	161 (156)	128 (125)
$cation \rightarrow S_1$	457 (440)	345 (333)	268 (260)	218 (213)
anion $\rightarrow T_1$	612 (624)	562 (569)	515 (522)	469 (476)
cation $\rightarrow T_1$	764 (779)	664 (672)	583 (585)	517 (520)
gr. st. \rightarrow S ₁	1705 (1570)	1252 (1132)	930 (828)	692 (610)
$S_1 \!\rightarrow T_1$	157 (179)	171 (188)	184 (204)	192 (213)
gr. st. \rightarrow T ₁	2310 (2265)	1898 (1820)	1571 (1481)	1298 (1206)

Oligoacenes

Oligophenyls

	3Ph	4Ph	5Ph	6Ph
gr. st. \rightarrow anion	1354 (1355)	1254 (1269)	1170 (1195)	1092 (1126)
gr. st. \rightarrow cation	1029 (1040)	1005 (1028)	965 (999)	914 (955)
anion $\rightarrow S_1$	423 (412)	366 (355)	339 (329)	324 (314)
$cation \rightarrow S_1$	427 (404)	374 (354)	351 (333)	338 (323)
anion $\rightarrow T_1$	622 (644)	542 (564)	485 (510)	449 (481)
cation $\rightarrow T_1$	671 (684)	567 (583)	501 (522)	463 (494)
gr. st. \rightarrow S ₁	2276 (2133)	2131 (2020)	2040 (1968)	1955 (1922)
$S_1 \rightarrow T_1$	88 (100)	74 (85)	66 (79)	67 (82)
gr. st. \rightarrow T ₁	2669 (2800)	2440 (2592)	2245 (2426)	2081 (2304)

	f3-cpd	f4-cpd	2-cpd	3-cpd	4-cpd
gr. st. → anion	1648 (1621)	1687 (1658)	1561 (1522)	1597 (1583)	1731 (1781)
gr. st. → cation	1344 (1318)	1428 (1387)	1473 (1463)	1609 (1620)	1809 (1890)
anion $\rightarrow S_1$	543 (552)	451 (460)	540 (535)	385 (387)	280 (281)
cation $\rightarrow S_1$	428 (432)	326 (334)	474 (480)	274 (281)	193 (194)
anion $\rightarrow T_1$	1039 (1074)	997 (1052)	1066 (1113)	879 (941)	781 (885)
cation $\rightarrow T_1$	1097 (1140)	1014 (1080)	983 (1011)	758 (803)	650 (734)
gr. st. \rightarrow S ₁	2581 (2322)	2265 (1946)	2691 (2475)	2579 (2300)	2105 (1718)
$S_1 \rightarrow T_1$	480 (598)	567 (767)	507 (605)	493 (675)	584 (972)
gr. st. \rightarrow T ₁	4114 (4111)	4004 (4047)	4021 (4063)	3744 (3920)	3732 (4233)

Oligocyclopentadienes (n-cpds) and fused oligocyclopentadienes (fn-cpds)

Oligothiophenes

	2T	3T	4 T	5T	6Т
gr. st. \rightarrow anion	1494 (1488)	1387 (1381)	1356 (1362)	1338 (1366)	1316 (1369)
gr. st. \rightarrow cation	1506 (1495)	1448 (1437)	1448 (1456)	1448 (1486)	1435 (1503)
anion $\rightarrow S_1$	855 (852)	594 (589)	463 (457)	390 (383)	346 (341)
cation $\rightarrow S_1$	556 (569)	347 (345)	271 (268)	231 (228)	208 (205)
anion $\rightarrow T_1$	1141 (1173)	892 (911)	596 (617)	623 (641)	549 (569)
cation \rightarrow T ₁	950 (973)	722 (738)	734 (753)	510 (532)	457 (484)
gr. st. \rightarrow S ₁	2562 (2351)	2101 (1873)	1961 (1736)	1923 (1719)	1916 (1745)
$S_1 \rightarrow T_1$	303 (309)	205 (232)	189 (226)	167 (205)	151 (193)
gr. st. \rightarrow T ₁	3430 (2419)	2989 (2976)	2765 (2813)	2602 (2710)	2473 (2643)

Oligot	furans
--------	--------

	20	30	40	50	60
gr. st. → anion	1751 (1719)	1593 (1579)	1542 (1553)	1507 (1546)	1468 (1535)
gr. st. → cation	1484 (1496)	1525 (1543)	1569 (1616)	1577 (1662)	1554 (1674)
anion $\rightarrow S_1$	632 (638)	449 (447)	295 (365)	331 (329)	280 (277)
cation $\rightarrow S_1$	661 (661)	455 (454)	432 (354)	309 (304)	313 (310)
anion $\rightarrow T_1$	946 (983)	751 (779)	636 (668)	555 (587)	504 (541)
cation \rightarrow T ₁	1158 (1171)	866 (879)	713 (736)	619 (647)	564 (604)
gr. st. \rightarrow S ₁	2691 (2475)	2319 (2088)	2219 (2000)	2190 (2005)	2168 (2031)
$S_1 \rightarrow T_1$	280 (290)	218 (250)	188 (228)	166 (207)	156 (203)
gr. st. \rightarrow T ₁	3722 (3726)	3281 (3319)	2842 (3022)	2842 (3022)	2680 (2933)

Fused oligothiophenes

	f3T	f4T	f5T	f6T
$\begin{array}{c} \text{gr. st.} \rightarrow \\ \text{anion} \end{array}$	1407 (1406)	1318 (1310)	1248 (1241)	1200 (1190)
gr. st. → cation	1304 (1286)	1239 (1215)	1212 (1184)	1191 (1166)
anion $\rightarrow S_1$	783 (779)	678 (669)	613 (602)	555 (598)
cation $\rightarrow S_1$	545 (538)	477 (472)	421 (414)	381 (304)
anion $\rightarrow T_1$	1082 (1102)	977 (992)	893 (903)	824 (832)
cation $\rightarrow T_1$	1042 (1060)	893 (910)	782 (797)	699 (712)
gr. st. \rightarrow S ₁	2224 (2040)	1983 (1810)	1879 (1699)	1785 (1609)
$S_1 \rightarrow T_1$	178 (198)	141 (156)	115 (129)	107 (121)
gr. st. \rightarrow T ₁	3087 (3083)	2805 (2793)	2620 (2611)	2482 (2478)

Fused oligofurans				
	f30	f4O	f50	f6O
gr. st. \rightarrow anion	1894 (1908)	1799 (1814)	1720 (1732)	1668 (1680)
gr. st. \rightarrow cation	1288 (1253)	1347 (1304)	1401 (1357)	1451 (1409)
anion $\rightarrow S_1$	540 (542)	510 (509)	470 (467)	433 (429)
$cation \rightarrow S_1$	788 (784)	673 (669)	590 (588)	524 (523)
anion $\rightarrow T_1$	971 (993)	924 (946)	881 (904)	839 (863)
$cation \to T_1$	1454 (1472)	1226 (1248)	1063 (1084)	945 (967)
gr. st. \rightarrow S ₁	2110 (1891)	2026 (1804)	1974 (1752)	1928 (1702)
$S_1 \rightarrow T_1$	344 (396)	273 (319)	241 (282)	232 (274)
gr. st. \rightarrow T ₁	3529 (3525)	3316 (3315)	3186 (3192)	3092 (3122)