Supporting Materials for:

Phase Transition in Amphiphilic Poly(N-isopropylacrylamide): Controlled Gelation

Bin Li, [†] and Mark E. Thompson^{*,†,‡}

[†]Department of Chemistry and [‡]Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States

*E-mail: <u>met@usc.edu</u>.

Table of Contents

Figure S1. FT-IR characterization and ¹ H NMR spectrum of p(NIPAM-co-BA)S2
Figure S2. GPC traces of p(NIPAM-co-BA) synthesized with varying the feeding ratio of comonomers and chain transfer agent (CTA)
Figure S3. Temperature dependence of the light scattering intensity and hydrodynamic diameters for p(NIPAM-co-BA) solutions with different molecular weights and BA feeding ratios
Figure S4. Phase diagram of aqueous p(NIPAM-co-BA) solutions with different molecular weights and BA feeding ratios
Figure S5. Summary of the temperature ramp curves of 20 w/w% aqueous p(NIPAM-co-BA) solutions at the regions with $G' \ge G''$
Figure S6. Frequency sweep of 20 w/w% aqueous $P_{10}(33K)$ solution at the gel region determined by the oscillatory temperature ramp
Figure S7. Rheological reversibility of p(NIPAM-BA) between different phase states
Figure S8. Rheological hysteresis curves of 20 w/w% aqueous $P_{10}(33K)$ solution in a heating and cooling cycle between different phase states
Figure S9. Long-term rheological stability of p(NIPAM-co-BA) in an oscillatory time sweep at different phase states
Figure S10. Photographs showing the self-healing process of P(NIPAM-co-BA) hydrogels with two different Mw at constant temperature (18 °C)

Figure S1. (a) FT-IR characterization of p(NIPAM-co-BA). (b) ¹H NMR spectrum (400M, CDCl₃) of p(NIPAM-co-BA).

Figure S2. GPC traces of p(NIPAM-co-BA) synthesized with varying the feeding ratio of comonomers and chain transfer agent (CTA). (a) Different CTA feeding ratios to monomers at a fixed BA/NIPAM ratio of 0.1. (b-d) Different BA feeding ratios at a fixed CTA/NIPAM ratio.

Figure S3. Temperature dependence of the light scattering intensity (a) and hydrodynamic diameters (b) for p(NIPAM-co-BA) solutions with different molecular weights and BA feeding ratios. Measurements were conducted with 5 mg mL⁻¹ polymer solutions and a temperature increment of 1 °C.

Figure S4. Phase diagram of aqueous p(NIPAM-co-BA) solutions with different molecular weights and BA feeding ratios. TS: transparent solution phase; OS: opaque solution phase; TG: transparent gel phase; OG: opaque gel phase; DG: dehydrated gel phase.

Figure S5. Summary of the temperature ramp curves of 20 w/w% aqueous p(NIPAM-co-BA) solutions at the regions with $G' \ge G''$. Measurements were performed at a constant strain of 1% and frequency of 6.3 rad s⁻¹.

Figure S6. Frequency sweep of 20 w/w% aqueous $P_{10}(33K)$ solution at the gel region determined by the oscillatory temperature ramp. Tan δ =1 was used as the boundary to distinguish different rheological behaviors, the gel was predominantly elastic at tan δ <1 regime, and predominantly viscous at tan δ >1 regime. Measurements were performed at a constant strain of 0.5%.

Figure S7. Rheological reversibility of p(NIPAM-BA) between different phase states. (a) 5 °C (transparent solution) and 25 °C (opaque gel). (b) 5 °C (transparent solution) and 32 °C (dehydrated gel). The aqueous polymer solution was made of $P_{10}(33K)$ at the concentration of 20 w/w%.

Figure S8. Rheological hysteresis curves of 20 w/w% aqueous $P_{10}(33K)$ solution in a heating and cooling cycle between different phase states. (a) 10 °C (transparent solution) and 25 °C (opaque gel). (b) 10 °C (transparent solution) and 40 °C (dehydrated gel).

Figure S9. Long-term rheological stability of p(NIPAM-co-BA) in an oscillatory time sweep at different phase states. Blue square: 25 °C (opaque gel); olive square: 32 °C (dehydrated gel). The polymer solution was made of $P_{10}(33K)$ at the concentration of 20 w/w%, and the measurements were performed at a constant strain of 1% and frequency of 6.3 rad s⁻¹.

Figure S10. Photographs showing the self-healing process of P(NIPAM-co-BA) hydrogels with two different Mw at constant temperature (18 °C). The colorless gel was made of 30 w/w% aqueous $P_{10}(33K)$ solution, and the red gel was made of 30 w/w% aqueous $P_{10}(29K)$ solution stained with rhodamine B to facilitate visualization.