Supplementary Information

Characterizing the hydrophobic-to-hydrophilic transition of electrolyte structuring in proton exchange membrane mimicking surfaces

Laila Moreno Ostertag^{1,2,†}, Xiao Ling^{3,†}, Katrin F. Domke³, Sapun H. Parekh³, Markus Valtiner^{1,2}

¹ Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung

GmbH, Max-Planck-Str. 1, D-40237 Düsseldorf, Germany

² Institute of Applied Physics, Technische Universität Wien, Wiedner Hauptstraße 8, A-1040

Vienna, Austria

³ Department of Molecular Spectroscopy, Max-Planck-Institut für Polymerforschung,

Ackermannweg 10, D-55128 Mainz, Germany

† denotes equal contribution.

*to whom correspondence should be addressed: Markus Valtiner, valtiner@mpie.de

1. Preparation and characterization of the surfaces

Au-substrate	Methods	Purposes
Annealed Au	A 40 nm Au layer was sputtered coated on Mica and was	Static contact
(40)/Mica	subsequently cleaned with piranha solution (volumetric ratio	angle
	of H_2O_2 and $H_2SO_4 = 1:3$), rinsed with MilliQ water, and	
	dried with N_2 gas. The Au(40)/Mica substrates were flame	
	annealed to make an atomically flat surface.	
Roughened	200 nm Au was deposited onto a clean cleavage Mica sheet	Surface
Au/glass	via physical vapor deposition (PVD). The Au(200)/Mica was	enhanced
	roughened under electrochemical condition, where 0.1 M KCl	Raman
	solution was used and a linear potential sweep oxidation-	scattering
	reduction cycle (ORC) was applied to the substrates. 25 ORC	spectroscopy
	cycles were applied for roughening the Au surface. ¹	
Au/glue/glass	100 nm Au was deposited onto a freshly cleaved, clean Mica	XPS;
	sheet via physical vapor deposition (PVD). A glass slide was	Atomic force
	subsequently cleaned with concentrated sulfuric acid, rinsed	microscopy
	with MilliQ H ₂ O, and then rinsed with pure ethanol	(AFM)
	(Analytical standard, SIGMA-ALDRICH Chemie GmbH)	
	following by drying with N ₂ gas. The cleaned glass slide was	
	glued onto the Au (100)/Mica using UV-active glue (Norland	
	Optical Adhesive 81, Norland Products). The	
	glass/glue/Au(100)/Mica was left under UV-light for 12 h for	
	curing the glue. The Mica was subsequently peeled off the	
	glass/glue/Au(100)/Mica in order to expose an atomically	
	smooth surface. ²	

Table S1 Preparation of the Au-substrates

Static contact angle

The macroscale hydrophobicity of the surface was characterized using static contact angle measurement, where 4 μ L sessile (MilliQ H₂O) drop the SAM and the drop shape was analyzed using the analysis system DSA 10. The contact angles were obtained by fitting the drop contour with the Young-Laplace equation. The contact angle decreases with increasing X indicating that increasing the mole ratio of R-SO₃Na in the thiol-ethanol solutions results in increasing numbers of hydrophilic sulfonic acid groups on the surface.

2. X-ray photoelectron spectroscopy (XPS)

XPS was used to determine the thickness of self-assembled monolayer (SAM) on the Ausubstrate. We used a PHI Quantera II instrument at a passing energy of 16 eV with a 24 W power. With a typical attenuation length λ of ~2 nm for electron attenuation in an organic matrix, the thickness T_{SAM} of a SAM with sulfonic acid headgroups can be estimated directly from the sulfur signals according to:

$$I = I_0 e^{\frac{T_{SAM}}{\lambda \sin \theta}}$$

where I is the sulfur intensity of the sulfonic acid, which is located at the outer layer of the SAM, and I_0 is the reference intensity measured for sulfur that is bound to the gold below the SAM; θ is the incident angle of X-ray. Based on this approach, the thickness of the SAM can be estimated at ~ 6.2 Å.

3. The extended DLVO model

We used a so-called extended DLVO model to reconstruct the total force F_{tot} . The model is described as: ³

$$F_{tot} = -\frac{R}{6} A_{H}(D_{r}) + \frac{4\pi\lambda_{D}\sigma^{2}R}{\epsilon\epsilon_{0}} (e^{-\frac{D_{r}}{\lambda_{D}}} + e^{-\frac{2D_{r}}{\lambda_{D}}}) - 4\pi\gamma RHye^{-\frac{D_{r}}{\lambda_{Hy}}}$$

where $A_H(D_r) = \frac{A_0}{D_r^2} \cdot 2 \frac{\sqrt{A_0A_1}}{(D_r + T_{SAM})^2} + \frac{A_1}{(D_r + 2T_{SAM})^2}$, $A_0 = 4.5 \times 10^{-21}$ J quantifies the interaction between hydrocarbons and $A_1 = 400 \times 10^{-21}$ J quantifies the interaction between Au-tip/Ausubstrate across the hydrocarbon layers; ³ T_{SAM} is the thickness of SAM and the value in this work has been determined by the XPS results in the preceding text; R is the radius of the tip and has been restricted to a variation range between 8 nm to 40 nm; $\gamma = 45$ mJ/m² is the hydrophobic tension; ³ σ is the surface charge density, whose value has been deduced from the fit; D_r is the distance between the tip and surface, Hydra *Hy* and Hydra decay length λ_{Hy} are free-fitting parameters that characterize the hydrophobicity of the surface, and the values for both of them were deduced from the fit; $\lambda_D = 9.6133 \times 10^{-10}$ m is the Debye length for the given ionic force; $\varepsilon = 8.85 \times 10^{-12}$ F/m is the permittivity of vacuum; and $\varepsilon_0 = 78.3$ F/m is the dielectric constant of water.

In the extended DLVO model, the total force was represented with the sum of the Van der Waals force $(-\frac{R}{6} A_{\rm H}(D_{\rm r}))$, the hydration $(-4\pi\gamma R Hye^{\frac{D_{\rm r}}{\lambda_{\rm Hy}}})$ force and the electric double layer force $(\frac{4\pi\lambda_{\rm D}\sigma^2 R}{\epsilon\epsilon_0} (e^{\frac{D_{\rm R}}{\lambda_{\rm D}}}+e^{\frac{2D_{\rm R}}{\lambda_{\rm D}}}))$. All force–distance curves in Figure 1 were fit to the model with Hy, λ_{Hy} and σ as free parameters.

4. Estimation of the surface charge density in Nafion[®] membranes

We estimated the charge surface density of the ionic water channels in commercial Nafion[®] membranes as explained below. ⁶ Commercial Nafion[®] membranes are characterized by an equivalent weight (EW), which is the dry weight of Nafion[®] that contains 1 mole of $-SO_3H$ groups. For two industry standard membranes, Nafion[®] 212 and Nafion[®] 117, the EW = 1100 g). ⁷ As is commonly believed, we assume the $-SO_3$ groups are distributed within cylindrical ionic water channels in Nafion[®], ^{6a} and the surface density C_N [#/m²] of $-SO_3H$ groups can be written as $C_N = \#(SO_3H)/A$, where A is the surface area of the cylindrical channel. A is given as $2 \times V \times (1/L + 1/r)$, where V is the volume of all water channels, L is the total length of all the water channels, and r is the radius of the water channels. Assuming L >> r, we obtained A $\approx 2 \times V \times (1/r)$. Then, the surface density of $-SO_3H$ in the ionic channel of a Nafion[®] membrane is given by:

$$C_{\rm N} \approx \frac{\#({\rm SO_3H})}{2 \times V \times \frac{1}{r}}$$

It has been reported that a dry Nafion[®] membrane with EW 1100 g/mol absorbs approximately 26 wt% when fully hydrated in liquid water. ⁸ In other words, 1 g of the dry Nafion[®] membrane takes up 0.26 g of water when the membrane is fully hydrated. Therefore, the volume of water in the fully hydrated membrane is calculated as 0.26 g/ ρ_{H_2O} , where ρ_{H_2O} is the density of water in the membrane. For simplicity, we assume that ρ_{H_2O} equals that of bulk water (10³ kg/m³). Assuming all water in Nafion[®] resides in the channels, the channel volume channel equals water volume. Thus V = 0.26 g/ ρ_{H_2O} . The #(SO₃H) in 1 g of Nafion[®] is given as 1/1100 [mol] × N_A [mol⁻¹] for 1 g of dry Nafion[®] membrane. The average radius r

of the ionic channels in Nafion[®] 212 and Nafion[®] 117 is ~ 2.3 nm. ⁹ Therefore, we obtained $C_N \sim 2.3 \times 10^{18} \text{ m}^{-2}$. As the –SO₃H groups have been reported to be all deprotonated in the fully hydrated Nafion[®] membranes, ¹⁰ we obtained the surface charge density C_s for Nafion[®] as $2.3 \times 10^{18} \text{ m}^{-2}/\text{m}^2$ respectively.

References

1. Tian, Z. Q.; Ren, B.; Wu, D. Y., Surface-enhanced Raman scattering From noble to transition metals and from rough surfaces to ordered nanostructures. *Journal of Physical Chemistry B* **2002**, *106* (37), 9463-9483.

2. Valtiner, M.; Kristiansen, K.; Greene, G. W.; Israelachvili, J. N., Effect of surface roughness and electrostatic surface potentials on forces between dissimilar surfaces in aqueous solution. *Adv Mater* **2011**, *23* (20), 2294-9.

3. Israelachvili, J. N., *Intermolecular and surface forces*. Academic Press: Burlington, MA, 2011.

4. (a) Love, J. C.; Estroff, L. a.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Selfassembled monolayers of thiolates on metals as a form of nanotechnology. *Chem Rev* 2005, *105* (4), 1103-1170; (b) Tiraferri, A.; Elimelech, M., Direct quantification of negatively charged functional groups on membrane surfaces. *Journal of Membrane Science* 2012, *389*, 499-508; (c) Dalmia, A.; Liu, C. C.; Savinell, R. F., Electrochemical behavior of gold electrodes modified with self-assembled monolayers with an acidic end group for selective detection of dopamine. *J Electroanal Chem* 1997, *430* (1-2), 205-214.

5. (a) Smalley, J. F.; Chalfant, K.; Feldberg, S. W.; Nahir, T. M.; Bowden, E. F., An Indirect Laser-Induced Temperature Jump Determination of the Surface p K a of 11-Mercaptoundecanoic Acid Monolayers Self-Assembled on Gold. *The Journal of Physical Chemistry B* **1999**, *103* (10), 1676-1685; (b) Leopold, M. C.; Black, J. A.; Bowden, E. F., Influence of Gold Topography on Carboxylic Acid Terminated Self-Assembled Monolayers. *Langmuir 2005* **2002**, *18* (4), 978-980.

6. (a) Schmidt-Rohr, K.; Chen, Q., Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. *Nature Materialser* **2008**, *7*, 75-83; (b) Ling, X.; Bonn, M.; Parekh, S. H.; Domke, K. F., Nanoscale Distribution of Sulfonic Acid Groups Determines Structure and Binding of Water in Nafion Membranes. *Angewandte Chemie - International Edition* **2016**, *55*, 4011-4015.

7. (a) Dupont, Nafion® Membranes N115,N117,N1110 Datasheet. *Nafion® Membranes N115,N117,N1110 Datasheet*; (b) Dupont, Nafion® Membranes NR211 and NR212 Datasheet. *Nafion® Membranes NR211 and NR212 Datasheet*.

8. (a) Jr., T. A. Z.; Derouin, C.; Radzinski, S.; Sherman, R. J.; Smith, V. T.; Springer, T. E.; Gottesfeld, S., Water Uptake by and Transport Through Nafion® 117 Membranes. *J. Electrochem. Soc.* **1993**, *140*; (b) Duan, Q.; Wang, H.; Benziger, J., Transport of liquid water through Nafion membranes. *Journal of Membrane Science* **2012**, *392-393*, 88-94.

9. (a) Kusoglu, A.; Hexemer, A.; Jiang, R. C.; Gittleman, C. S.; Weber, A. Z., Effect of compression on PFSA-ionomer morphology and predicted conductivity changes. *Journal of Membrane Science* **2012**, *421*, 283-291; (b) Kusoglu, A.; Cho, K. T.; Prato, R. A.; Weber, A. Z., Structural and transport properties of Nafion in hydrobromic-acid solutions. *Solid State Ionics* **2013**, *252*, 68-74.

10. Gruger, A.; André, R.; Schmatko, T.; Colomban, P., Nanostructure of Nafion® membranes at different states of hydration An IR and Raman study. *Vib Spectrosc* **2001**, *26*, 215-225.