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The specific surface area of the condensate free surface is related to the small-distance behavior of the covariance
of the empty pore space COO(r) via

COO(r) ' φO −
aO
4
r +O(r2) (SI-1)

From Eq. (20) of the main text, the covariance can be calculated as

COO(r) = 〈H[β − Y (x1)]H[γ − Z(x1)]H[β − Y (x2)]H[γ − Z(x2)]〉 (SI-2)

where the two points x1 and x2 are at distance r from one another. This can be expressed in terms of the multivariate
error function Λ4, which can in principle be simplified using the same methods as used for Λ2 and Λ3 in Appendix
A of the main text. However, the function Λ4 depends in general on a total of ten arguments (four thresholds α and
six correlations gij) so that the mathematics would be extremely cumbersome. We therefore consider here only the
small-r behavior of COO.

In Dirichlet’s representation, the step function H[.] is written as follows

H[y − α] =
−1

2πi

∫
C

dw

w
e−i(y−α)w (SI-3)

where the contour C lies along the real axis but crosses the imaginary axis in upper half plane. Using Eq. (SI-3), the
covariance function in Eq. (SI-2) can be written as

COO(r) =

(
−1

2iπ

)4 ∫
C

dw1

w1

∫
C

dw2

w2

∫
C

dw′1
w′1

∫
C

dw′2
w′2

e−i(w1β+w2γ+w
′
1β+w

′
2γ)
〈
eiw

T ·Y
〉

(SI-4)

where we have used the notations wT = [w1 w
′
1 w2 w

′
2] and YT = [Y (x1) Z(x1) Y (x2) Z(x2)]. The average value is

calculated as 〈
eiw

T ·y
〉

= e−
1
2w

TGw (SI-5)

where G is the covariance matrix of Y having the following structure

G =

(
Ĝ(0) Ĝ(r)

Ĝ(r) Ĝ(0)

)
with Ĝ(r) =

(
gY (r) gY Z(r)
gY Z(r) gZ(r)

)
(SI-6)

The only term proportional to gY Z(0) in the quadratic form wTGw being 2gY Z(0)(w1w
′
1 + w2w

′
2), one can remove

the singularity at w1 = w′1 = 0 (or at w2 = w′2 = 0 ) in Eq. (SI-4) by taking the derivative of COO(r) with respect to
gY Z(0). After some algebra this leads to

∂COO(r)

∂gY Z(0)
= −2

(
−1

2iπ

)4 ∫
C

dw2

w2

∫
C

dw′2
w′2

e−iw
T
2 ·α− 1

2w
T
2 Ĝ(0)w2∫ ∞

−∞
dw1

∫ ∞
−∞

dw′1 e
−iwT

1 ·χ− 1
2w

T
1 Ĝ(0)w1 (SI-7)

with

αT = [β γ] , wT
1 = [w1 w

′
1] , wT

2 = [w2 w
′
2] (SI-8)
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and

χ = α− iĜ(r)w2 (SI-9)

The extra factor 2 in Eq. (SI-7) results from the symmetry of wTGw with respect to w1 and w2.
Removing the singularity in the contour integrals turns them into regular integrals along the real axis, which can

be calculated using the general result∫ +∞

−∞
dw1 . . .

∫ +∞

−∞
dwn e−

1
2w

THw−iwT ·z =
(2π)n/2

|H|1/2
e−

1
2z

TH−1z (SI-10)

which holds for any symmetric and positive-definite matrix H. Applying this formula to simplify Eq. (SI-7) leads to

∂COO(r)

∂gY Z(0)
=
−1

4π3

1

|Ĝ(0)|1/2
e−

1
2α

T Ĝ−1(0)α

∫
C

dw2

w2

∫
C

dw′2
w′2

e−iw
T
2 ·µ− 1

2w
T
2 Hw2 (SI-11)

with

µ = α− Ĝ(r)Ĝ−1(0)α and H = Ĝ(0)− Ĝ(r)Ĝ−1(0)Ĝ(r) (SI-12)

The double contour integral in Eq. (SI-11) can be conveniently expressed in terms of Λ2. This eventually leads to
the following final expression

∂COO(r)

∂gY Z(0)
=

1

π
√

1− g2Y Z(0)
exp

(
−β

2 + γ2 − 2βγgY Z(0)

2(1− g2Y Z(0))

)
× Λ2

[(
−µ1/

√
h1

−µ2/
√
h2

)
,

(
1 h12/

√
h1h2

h12/
√
h1h2 1

)]
(SI-13)

where µ1/2 and h1/2/12 are the components of µ and H. The latter are obtained through Eq. (SI-12) via successive
matrix multiplications; the values are

µ1 = β − 1

1− g2Y Z(0)

[
β [gY (r)− gY Z(0)gY Z(r)] + γ [gY Z(r)− gY (r)gY Z(0)]

]
(SI-14)

µ2 = γ − 1

1− g2Y Z(0)

[
β [gY Z(r)− gZ(r)gY Z(0)] + γ [gZ(r)− gY Z(0)gY Z(r)]

]
(SI-15)

and

h1 = 1− 1

1− g2Y Z(0)

[
g2Y (r) + g2Y Z(r)− 2gY (r)gY Z(0)gY Z(r)

]
(SI-16)

h2 = 1− 1

1− g2Y Z(0)

[
g2Z(r) + g2Y Z(r)− 2gZ(r)gY Z(0)gY Z(r)

]
(SI-17)

h12 = gY Z(0)− 1

1− g2Y Z(0)

[
gY Z(r) [gY (r) + gZ(r)]− gY Z(0)

[
gY (r)gZ(r) + g2Y Z(r)

] ]
(SI-18)

The partial derivative ∂COO/∂gY Z(r) can be calculated along the same lines as Eq. (SI-13). This leads to the
following expression

∂COO(r)

∂gY Z(r)
=

1

π
√

1− g2Y Z(r)
exp

(
−β

2 + γ2 − 2βγ gY Z(r)

2(1− g2Y Z(r))

)
× Λ2

[(
−µ′1/

√
h′1

−µ′2/
√
h′2

)
,

(
1 h′12/

√
h′1h

′
2

h′12/
√
h′1h

′
2 1

)]
(SI-19)

where µ′1/2 and h′1/2/12 are obtained from Eqs. (SI-14), (SI-15), (SI-16), (SI-17) and (SI-18) by replacing gY Z(0) with

gY Z(r) and vice versa.
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The function COO(r) can be viewed as being defined in a 4-dimensional parameter space, with dimensions gY (r),
gZ(r), gY Z(0) and gY Z(r). Knowing the two partial derivatives ∂COO(r)/∂gY Z(0) and ∂COO(r)/∂gY Z(r) enables one
to calculate the value of COO(r) via a path integral in the corresponding [gY Z(0), gY Z(r)] plane. In order to formalize
this, we note that Eqs. (SI-13) and (SI-19) have the structure

∂COO
∂x

= f(x, y) and
∂COO
∂y

= f(y, x) (SI-20)

where x stands for gY Z(0) and y for gY Z(r). A natural choice for the path along which to integrate is the straight
line joining the points [x = 0; y = 0] and [x = gY Z(0); y = gY Z(r)], which can be parametrized as

x = tgY Z(0) y = tgY Z(r) (SI-21)

where t is an integration variable that takes values between 0 and 1. Evaluating the path integral along this straight
line leads to

COO(r) = COO(r)
∣∣∣
0

+ gY Z(0)

∫ 1

0

f(tgY Z(0), tgY Z(r)) dt+ gY Z(r)

∫ 1

0

f(tgY Z(r), tgY Z(0)) dt (SI-22)

The starting point of the path, COO(r)
∣∣∣
0
, corresponds to the situation where gY Z(r) = 0 for all r, which means that

the fields Y and Z are independent. In this case the two-point function takes the value

COO(r)
∣∣∣
0

=

{
1− 2Λ1[β] + Λ2

[(
β
β

)
,

(
1 gY (r)

gY (r) 1

)]}
×
{

1− 2Λ1[γ] + Λ2

[(
γ
γ

)
,

(
1 gZ(r)

gZ(r) 1

)]}
(SI-23)

which results directly from Eq. (SI-2) if the fields Y and Z are independent from one another.
The specific surface area aO then obtained from Eq. (SI-1). For small values of r the field correlation functions are

quadratic, and their expressions are given by Eq. (4), (B8) and (B10) of the main text. Using these expressions in
Eqs. (SI-14), (SI-15), (SI-16), (SI-17) and (SI-18), and neglecting all contributions of order O(r3), one obtains

µ1√
h1

=
ν1r√
2lY

µ2√
h2

=
ν2r√
2lZ

h12√
h1h2

= gY Z(0)
lY lZ
lY Z

(SI-24)

with

ν1 = β +
(βgY Z(0)− γ)gY Z(0)

1− g2Y Z(0)

[
1−

(
lY
lY Z

)2
]

(SI-25)

and

ν2 = γ +
(γgY Z(0)− β)gY Z(0)

1− g2Y Z(0)

[
1−

(
lZ
lY Z

)2
]

(SI-26)

Introducing these expressions in Eq. (SI-13) leads to

∂COO
∂gY Z(0)

=
1

π
√

1− g212(0)
exp

(
−β

2 + γ2 − 2βγgY Z(0)

2(1− g2Y Z(0))

)
×
{

1

4
+

1

4
√
π

(
ν1
lY

+
ν2
lZ

)
+

1

2π
arcsin

(
gY Z(0)

lY lZ
lY Z

)}
+O(r2) (SI-27)

If we proceed in the same way for Eq. (SI-19), i.e. starting with Eqs Eqs. (SI-14), (SI-15), (SI-16), (SI-17) and
(SI-18) with gY Z(0) exchanged with gY Z(r), this eventually leads to

µ′1√
h′1

=
ν′1r√
2lY

µ′2√
h′2

=
ν′2r√
2lZ

h′12√
h′1h

′
2

= −g12(0)
lY lZ
lY Z

(SI-28)
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with

ν′1 = β +
(βgY Z(0)− γ)gY Z(0)

1− g2Y Z(0)

[
1 +

(
lY
lY Z

)2
]

(SI-29)

and

ν′2 = γ +
(γgY Z(0)− β)gY Z(0)

1− g2Y Z(0)

[
1 +

(
lZ
lY Z

)2
]

(SI-30)

We finally obtain

∂COO
∂gY Z(r)

=
1

π
√

1− g2Y Z(0)
exp

(
−β

2 + γ2 − 2βγgY Z(0)

2(1− g2Y Z(0))

)
×
{

1

4
+

1

4
√
π

(
ν′1
lY

+
ν′2
lY

)
− 1

2π
arcsin

(
gY Z(0)

lY lZ
lY Z

)}
+O(r2) (SI-31)

If one introduces Eqs. (SI-27) and (SI-31) into Eq. (SI-22), one eventually finds Eq. (SI-1) with φO and aO given by
Eqs. (21) and (23) of the main text, respectively.


