Supporting Information to

Stochastic Analysis of Capillary Condensation in Disordered Mesopores

Derivation of Eq. (23)

Cedric J. Gommes and Anthony P. Roberts

The specific surface area of the condensate free surface is related to the small-distance behavior of the covariance of the empty pore space $C_{OO}(r)$ via

$$C_{OO}(r) \simeq \phi_O - \frac{a_O}{4}r + O(r^2) \tag{SI-1}$$

From Eq. (20) of the main text, the covariance can be calculated as

$$C_{OO}(r) = \langle H[\beta - Y(\mathbf{x}_1)]H[\gamma - Z(\mathbf{x}_1)]H[\beta - Y(\mathbf{x}_2)]H[\gamma - Z(\mathbf{x}_2)]\rangle$$
(SI-2)

where the two points \mathbf{x}_1 and \mathbf{x}_2 are at distance r from one another. This can be expressed in terms of the multivariate error function Λ_4 , which can in principle be simplified using the same methods as used for Λ_2 and Λ_3 in Appendix A of the main text. However, the function Λ_4 depends in general on a total of ten arguments (four thresholds α and six correlations g_{ij}) so that the mathematics would be extremely cumbersome. We therefore consider here only the small-r behavior of C_{OO} .

In Dirichlet's representation, the step function H[.] is written as follows

$$H[y-\alpha] = \frac{-1}{2\pi i} \int_C \frac{dw}{w} e^{-i(y-\alpha)w}$$
(SI-3)

where the contour C lies along the real axis but crosses the imaginary axis in upper half plane. Using Eq. (SI-3), the covariance function in Eq. (SI-2) can be written as

$$C_{OO}(r) = \left(\frac{-1}{2i\pi}\right)^4 \int_C \frac{dw_1}{w_1} \int_C \frac{dw_2}{w_2} \int_C \frac{dw_1'}{w_1'} \int_C \frac{dw_2'}{w_2'} e^{-i(w_1\beta + w_2\gamma + w_1'\beta + w_2'\gamma)} \left\langle e^{i\mathbf{w}^T \cdot \mathbf{Y}} \right\rangle \tag{SI-4}$$

where we have used the notations $\mathbf{w}^T = [w_1 \ w'_1 \ w_2 \ w'_2]$ and $\mathbf{Y}^T = [Y(\mathbf{x}_1) \ Z(\mathbf{x}_1) \ Y(\mathbf{x}_2) \ Z(\mathbf{x}_2)]$. The average value is calculated as

$$\left\langle e^{i\mathbf{w}^T\cdot\mathbf{y}}\right\rangle = e^{-\frac{1}{2}\mathbf{w}^T\mathbf{G}\mathbf{w}}$$
 (SI-5)

where G is the covariance matrix of Y having the following structure

$$\mathbf{G} = \begin{pmatrix} \hat{\mathbf{G}}(0) & \hat{\mathbf{G}}(r) \\ \hat{\mathbf{G}}(r) & \hat{\mathbf{G}}(0) \end{pmatrix} \quad \text{with} \quad \hat{\mathbf{G}}(r) = \begin{pmatrix} g_Y(r) & g_{YZ}(r) \\ g_{YZ}(r) & g_Z(r) \end{pmatrix}$$
(SI-6)

The only term proportional to $g_{YZ}(0)$ in the quadratic form $\mathbf{w}^T \mathbf{G} \mathbf{w}$ being $2g_{YZ}(0)(w_1w'_1 + w_2w'_2)$, one can remove the singularity at $w_1 = w'_1 = 0$ (or at $w_2 = w'_2 = 0$) in Eq. (SI-4) by taking the derivative of $C_{OO}(r)$ with respect to $g_{YZ}(0)$. After some algebra this leads to

$$\frac{\partial C_{OO}(r)}{\partial g_{YZ}(0)} = -2\left(\frac{-1}{2i\pi}\right)^4 \int_C \frac{dw_2}{w_2} \int_C \frac{dw_2'}{w_2'} e^{-i\mathbf{w}_2^T \cdot \alpha - \frac{1}{2}\mathbf{w}_2^T \hat{\mathbf{G}}(0)\mathbf{w}_2} \int_{-\infty}^{\infty} dw_1 \int_{-\infty}^{\infty} dw_1 \int_{-\infty}^{\infty} dw_1' e^{-i\mathbf{w}_1^T \cdot \chi - \frac{1}{2}\mathbf{w}_1^T \hat{\mathbf{G}}(0)\mathbf{w}_1}$$
(SI-7)

with

$$\alpha^{T} = [\beta \ \gamma] , \quad \mathbf{w}_{1}^{T} = [w_{1} \ w_{1}'] , \quad \mathbf{w}_{2}^{T} = [w_{2} \ w_{2}']$$
(SI-8)

and

$$\chi = \alpha - i\hat{\mathbf{G}}(r)\mathbf{w}_2 \tag{SI-9}$$

The extra factor 2 in Eq. (SI-7) results from the symmetry of $\mathbf{w}^T \mathbf{G} \mathbf{w}$ with respect to \mathbf{w}_1 and \mathbf{w}_2 .

Removing the singularity in the contour integrals turns them into regular integrals along the real axis, which can be calculated using the general result

$$\int_{-\infty}^{+\infty} dw_1 \dots \int_{-\infty}^{+\infty} dw_n \quad e^{-\frac{1}{2}\mathbf{w}^T \mathbf{H}\mathbf{w} - i\mathbf{w}^T \cdot \mathbf{z}} = \frac{(2\pi)^{n/2}}{|\mathbf{H}|^{1/2}} e^{-\frac{1}{2}\mathbf{z}^T \mathbf{H}^{-1}\mathbf{z}}$$
(SI-10)

which holds for any symmetric and positive-definite matrix \mathbf{H} . Applying this formula to simplify Eq. (SI-7) leads to

$$\frac{\partial C_{OO}(r)}{\partial g_{YZ}(0)} = \frac{-1}{4\pi^3} \frac{1}{|\hat{G}(0)|^{1/2}} e^{-\frac{1}{2}\alpha^T \hat{\mathbf{G}}^{-1}(0)\alpha} \int_C \frac{dw_2}{w_2} \int_C \frac{dw_2}{w_2'} e^{-i\mathbf{w}_2^T \cdot \mu - \frac{1}{2}\mathbf{w}_2^T \mathbf{H}\mathbf{w}_2}$$
(SI-11)

with

$$\mu = \alpha - \hat{\mathbf{G}}(r)\hat{\mathbf{G}}^{-1}(0)\alpha \quad \text{and} \quad \mathbf{H} = \hat{\mathbf{G}}(0) - \hat{\mathbf{G}}(r)\hat{\mathbf{G}}^{-1}(0)\hat{\mathbf{G}}(r)$$
(SI-12)

The double contour integral in Eq. (SI-11) can be conveniently expressed in terms of Λ_2 . This eventually leads to the following final expression

$$\frac{\partial C_{OO}(r)}{\partial g_{YZ}(0)} = \frac{1}{\pi\sqrt{1 - g_{YZ}^2(0)}} \exp\left(-\frac{\beta^2 + \gamma^2 - 2\beta\gamma g_{YZ}(0)}{2(1 - g_{YZ}^2(0))}\right) \\ \times \Lambda_2 \left[\begin{pmatrix} -\mu_1/\sqrt{h_1} \\ -\mu_2/\sqrt{h_2} \end{pmatrix}, \begin{pmatrix} 1 \\ h_{12}/\sqrt{h_1h_2} \\ 1 \end{pmatrix} \right]$$
(SI-13)

where $\mu_{1/2}$ and $h_{1/2/12}$ are the components of μ and **H**. The latter are obtained through Eq. (SI-12) via successive matrix multiplications; the values are

$$\mu_1 = \beta - \frac{1}{1 - g_{YZ}^2(0)} \Big[\beta \left[g_Y(r) - g_{YZ}(0) g_{YZ}(r) \right] + \gamma \left[g_{YZ}(r) - g_Y(r) g_{YZ}(0) \right] \Big]$$
(SI-14)

$$\mu_2 = \gamma - \frac{1}{1 - g_{YZ}^2(0)} \Big[\beta \left[g_{YZ}(r) - g_Z(r) g_{YZ}(0) \right] + \gamma \left[g_Z(r) - g_{YZ}(0) g_{YZ}(r) \right] \Big]$$
(SI-15)

and

$$h_1 = 1 - \frac{1}{1 - g_{YZ}^2(0)} \Big[g_Y^2(r) + g_{YZ}^2(r) - 2g_Y(r)g_{YZ}(0)g_{YZ}(r) \Big]$$
(SI-16)

$$h_2 = 1 - \frac{1}{1 - g_{YZ}^2(0)} \Big[g_Z^2(r) + g_{YZ}^2(r) - 2g_Z(r)g_{YZ}(0)g_{YZ}(r) \Big]$$
(SI-17)

$$h_{12} = g_{YZ}(0) - \frac{1}{1 - g_{YZ}^2(0)} \Big[g_{YZ}(r) \left[g_Y(r) + g_Z(r) \right] - g_{YZ}(0) \left[g_Y(r) g_Z(r) + g_{YZ}^2(r) \right] \Big]$$
(SI-18)

The partial derivative $\partial C_{OO}/\partial g_{YZ}(r)$ can be calculated along the same lines as Eq. (SI-13). This leads to the following expression

$$\frac{\partial C_{OO}(r)}{\partial g_{YZ}(r)} = \frac{1}{\pi\sqrt{1-g_{YZ}^2(r)}} \exp\left(-\frac{\beta^2 + \gamma^2 - 2\beta\gamma \ g_{YZ}(r)}{2(1-g_{YZ}^2(r))}\right) \\ \times \Lambda_2\left[\left(-\mu_1'/\sqrt{h_1'}\right), \left(\frac{1}{h_{12}'/\sqrt{h_1'h_2'}} \frac{h_{12}'/\sqrt{h_1'h_2'}}{1}\right)\right]$$
(SI-19)

where $\mu'_{1/2}$ and $h'_{1/2/12}$ are obtained from Eqs. (SI-14), (SI-15), (SI-16), (SI-17) and (SI-18) by replacing $g_{YZ}(0)$ with $g_{YZ}(r)$ and vice versa.

The function $C_{OO}(r)$ can be viewed as being defined in a 4-dimensional parameter space, with dimensions $g_Y(r)$, $g_Z(r)$, $g_{YZ}(0)$ and $g_{YZ}(r)$. Knowing the two partial derivatives $\partial C_{OO}(r)/\partial g_{YZ}(0)$ and $\partial C_{OO}(r)/\partial g_{YZ}(r)$ enables one to calculate the value of $C_{OO}(r)$ via a path integral in the corresponding $[g_{YZ}(0), g_{YZ}(r)]$ plane. In order to formalize this, we note that Eqs. (SI-13) and (SI-19) have the structure

$$\frac{\partial C_{OO}}{\partial x} = f(x, y) \text{ and } \frac{\partial C_{OO}}{\partial y} = f(y, x)$$
 (SI-20)

where x stands for $g_{YZ}(0)$ and y for $g_{YZ}(r)$. A natural choice for the path along which to integrate is the straight line joining the points [x = 0; y = 0] and $[x = g_{YZ}(0); y = g_{YZ}(r)]$, which can be parametrized as

$$x = tg_{YZ}(0) \quad y = tg_{YZ}(r) \tag{SI-21}$$

where t is an integration variable that takes values between 0 and 1. Evaluating the path integral along this straight line leads to

$$C_{OO}(r) = C_{OO}(r)\Big|_{0} + g_{YZ}(0) \int_{0}^{1} f(tg_{YZ}(0), tg_{YZ}(r)) dt + g_{YZ}(r) \int_{0}^{1} f(tg_{YZ}(r), tg_{YZ}(0)) dt$$
(SI-22)

The starting point of the path, $C_{OO}(r)\Big|_{0}$, corresponds to the situation where $g_{YZ}(r) = 0$ for all r, which means that the fields Y and Z are independent. In this case the two-point function takes the value

$$C_{OO}(r)\Big|_{0} = \left\{ 1 - 2\Lambda_{1}[\beta] + \Lambda_{2} \left[\begin{pmatrix} \beta \\ \beta \end{pmatrix}, \begin{pmatrix} 1 & g_{Y}(r) \\ g_{Y}(r) & 1 \end{pmatrix} \right] \right\} \\ \times \left\{ 1 - 2\Lambda_{1}[\gamma] + \Lambda_{2} \left[\begin{pmatrix} \gamma \\ \gamma \end{pmatrix}, \begin{pmatrix} 1 & g_{Z}(r) \\ g_{Z}(r) & 1 \end{pmatrix} \right] \right\}$$
(SI-23)

which results directly from Eq. (SI-2) if the fields Y and Z are independent from one another.

The specific surface area a_O then obtained from Eq. (SI-1). For small values of r the field correlation functions are quadratic, and their expressions are given by Eq. (4), (B8) and (B10) of the main text. Using these expressions in Eqs. (SI-14), (SI-15), (SI-16), (SI-17) and (SI-18), and neglecting all contributions of order $O(r^3)$, one obtains

$$\frac{\mu_1}{\sqrt{h_1}} = \frac{\nu_1 r}{\sqrt{2}l_Y} \quad \frac{\mu_2}{\sqrt{h_2}} = \frac{\nu_2 r}{\sqrt{2}l_Z} \quad \frac{h_{12}}{\sqrt{h_1 h_2}} = g_{YZ}(0) \frac{l_Y l_Z}{l_{YZ}} \tag{SI-24}$$

with

$$\nu_1 = \beta + \frac{(\beta g_{YZ}(0) - \gamma) g_{YZ}(0)}{1 - g_{YZ}^2(0)} \left[1 - \left(\frac{l_Y}{l_{YZ}}\right)^2 \right]$$
(SI-25)

and

$$\nu_2 = \gamma + \frac{(\gamma g_{YZ}(0) - \beta)g_{YZ}(0)}{1 - g_{YZ}^2(0)} \left[1 - \left(\frac{l_Z}{l_{YZ}}\right)^2 \right]$$
(SI-26)

Introducing these expressions in Eq. (SI-13) leads to

$$\frac{\partial C_{OO}}{\partial g_{YZ}(0)} = \frac{1}{\pi\sqrt{1-g_{12}^2(0)}} \exp\left(-\frac{\beta^2 + \gamma^2 - 2\beta\gamma g_{YZ}(0)}{2(1-g_{YZ}^2(0))}\right) \\ \times \left\{\frac{1}{4} + \frac{1}{4\sqrt{\pi}}\left(\frac{\nu_1}{l_Y} + \frac{\nu_2}{l_Z}\right) + \frac{1}{2\pi}\arcsin\left(g_{YZ}(0)\frac{l_Y l_Z}{l_{YZ}}\right)\right\} + O(r^2)$$
(SI-27)

If we proceed in the same way for Eq. (SI-19), i.e. starting with Eqs Eqs. (SI-14), (SI-15), (SI-16), (SI-17) and (SI-18) with $g_{YZ}(0)$ exchanged with $g_{YZ}(r)$, this eventually leads to

$$\frac{\mu_1'}{\sqrt{h_1'}} = \frac{\nu_1'r}{\sqrt{2}l_Y} \quad \frac{\mu_2'}{\sqrt{h_2'}} = \frac{\nu_2'r}{\sqrt{2}l_Z} \quad \frac{h_{12}'}{\sqrt{h_1'h_2'}} = -g_{12}(0)\frac{l_Yl_Z}{l_{YZ}} \tag{SI-28}$$

with

$$\nu_1' = \beta + \frac{(\beta g_{YZ}(0) - \gamma) g_{YZ}(0)}{1 - g_{YZ}^2(0)} \left[1 + \left(\frac{l_Y}{l_{YZ}}\right)^2 \right]$$
(SI-29)

and

$$\nu_2' = \gamma + \frac{(\gamma g_{YZ}(0) - \beta) g_{YZ}(0)}{1 - g_{YZ}^2(0)} \left[1 + \left(\frac{l_Z}{l_{YZ}}\right)^2 \right]$$
(SI-30)

We finally obtain

$$\frac{\partial C_{OO}}{\partial g_{YZ}(r)} = \frac{1}{\pi\sqrt{1 - g_{YZ}^2(0)}} \exp\left(-\frac{\beta^2 + \gamma^2 - 2\beta\gamma g_{YZ}(0)}{2(1 - g_{YZ}^2(0))}\right) \\ \times \left\{\frac{1}{4} + \frac{1}{4\sqrt{\pi}}\left(\frac{\nu_1'}{l_Y} + \frac{\nu_2'}{l_Y}\right) - \frac{1}{2\pi} \arcsin\left(g_{YZ}(0)\frac{l_Y l_Z}{l_{YZ}}\right)\right\} + O(r^2)$$
(SI-31)

If one introduces Eqs. (SI-27) and (SI-31) into Eq. (SI-22), one eventually finds Eq. (SI-1) with ϕ_O and a_O given by Eqs. (21) and (23) of the main text, respectively.