## Supporting Information to

## Stochastic Analysis of Capillary Condensation in Disordered Mesopores

## Derivation of Eq. (23)

Cedric J. Gommes and Anthony P. Roberts

The specific surface area of the condensate free surface is related to the small-distance behavior of the covariance of the empty pore space $C_{O O}(r)$ via

$$
\begin{equation*}
C_{O O}(r) \simeq \phi_{O}-\frac{a_{O}}{4} r+O\left(r^{2}\right) \tag{SI-1}
\end{equation*}
$$

From Eq. (20) of the main text, the covariance can be calculated as

$$
\begin{equation*}
C_{O O}(r)=\left\langle H\left[\beta-Y\left(\mathbf{x}_{1}\right)\right] H\left[\gamma-Z\left(\mathbf{x}_{1}\right)\right] H\left[\beta-Y\left(\mathbf{x}_{2}\right)\right] H\left[\gamma-Z\left(\mathbf{x}_{2}\right)\right]\right\rangle \tag{SI-2}
\end{equation*}
$$

where the two points $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ are at distance $r$ from one another. This can be expressed in terms of the multivariate error function $\Lambda_{4}$, which can in principle be simplified using the same methods as used for $\Lambda_{2}$ and $\Lambda_{3}$ in Appendix A of the main text. However, the function $\Lambda_{4}$ depends in general on a total of ten arguments (four thresholds $\alpha$ and six correlations $g_{i j}$ ) so that the mathematics would be extremely cumbersome. We therefore consider here only the small- $r$ behavior of $C_{O O}$.

In Dirichlet's representation, the step function $H[$.$] is written as follows$

$$
\begin{equation*}
H[y-\alpha]=\frac{-1}{2 \pi i} \int_{C} \frac{d w}{w} e^{-i(y-\alpha) w} \tag{SI-3}
\end{equation*}
$$

where the contour $C$ lies along the real axis but crosses the imaginary axis in upper half plane. Using Eq. (SI-3), the covariance function in Eq. (SI-2) can be written as

$$
\begin{equation*}
C_{O O}(r)=\left(\frac{-1}{2 i \pi}\right)^{4} \int_{C} \frac{d w_{1}}{w_{1}} \int_{C} \frac{d w_{2}}{w_{2}} \int_{C} \frac{d w_{1}^{\prime}}{w_{1}^{\prime}} \int_{C} \frac{d w_{2}^{\prime}}{w_{2}^{\prime}} e^{-i\left(w_{1} \beta+w_{2} \gamma+w_{1}^{\prime} \beta+w_{2}^{\prime} \gamma\right)}\left\langle e^{i \mathbf{w}^{T} \cdot \mathbf{Y}}\right\rangle \tag{SI-4}
\end{equation*}
$$

where we have used the notations $\mathbf{w}^{T}=\left[\begin{array}{llll}w_{1} & w_{1}^{\prime} & w_{2} & w_{2}^{\prime}\end{array}\right]$ and $\mathbf{Y}^{T}=\left[Y\left(\mathbf{x}_{1}\right) Z\left(\mathbf{x}_{1}\right) Y\left(\mathbf{x}_{2}\right) Z\left(\mathbf{x}_{2}\right)\right]$. The average value is calculated as

$$
\begin{equation*}
\left\langle e^{i \mathbf{w}^{T} \cdot \mathbf{y}}\right\rangle=e^{-\frac{1}{2} \mathbf{w}^{T} \mathbf{G} \mathbf{w}} \tag{SI-5}
\end{equation*}
$$

where $\mathbf{G}$ is the covariance matrix of $\mathbf{Y}$ having the following structure

$$
\mathbf{G}=\left(\begin{array}{cc}
\hat{\mathbf{G}}(0) & \hat{\mathbf{G}}(r)  \tag{SI-6}\\
\hat{\mathbf{G}}(r) & \hat{\mathbf{G}}(0)
\end{array}\right) \quad \text { with } \quad \hat{\mathbf{G}}(r)=\left(\begin{array}{cc}
g_{Y}(r) & g_{Y Z}(r) \\
g_{Y Z}(r) & g_{Z}(r)
\end{array}\right)
$$

The only term proportional to $g_{Y Z}(0)$ in the quadratic form $\mathbf{w}^{T} \mathbf{G w}$ being $2 g_{Y Z}(0)\left(w_{1} w_{1}^{\prime}+w_{2} w_{2}^{\prime}\right)$, one can remove the singularity at $w_{1}=w_{1}^{\prime}=0$ (or at $w_{2}=w_{2}^{\prime}=0$ ) in Eq. (SI-4) by taking the derivative of $C_{O O}(r)$ with respect to $g_{Y Z}(0)$. After some algebra this leads to

$$
\begin{align*}
& \frac{\partial C_{O O}(r)}{\partial g_{Y Z}(0)}=-2\left(\frac{-1}{2 i \pi}\right)^{4} \int_{C} \frac{d w_{2}}{w_{2}} \int_{C} \frac{d w_{2}^{\prime}}{w_{2}^{\prime}} e^{-i \mathbf{w}_{2}^{T} \cdot \alpha-\frac{1}{2} \mathbf{w}_{2}^{T} \hat{\mathbf{G}}(0) \mathbf{w}_{2}} \\
& \int_{-\infty}^{\infty} d w_{1} \int_{-\infty}^{\infty} d w_{1}^{\prime} e^{-i \mathbf{w}_{1}^{T} \cdot \chi-\frac{1}{2} \mathbf{w}_{1}^{T} \hat{\mathbf{G}}(0) \mathbf{w}_{1}} \tag{SI-7}
\end{align*}
$$

with

$$
\alpha^{T}=[\beta \gamma], \quad \mathbf{w}_{1}^{T}=\left[\begin{array}{ll}
w_{1} & w_{1}^{\prime}
\end{array}\right], \quad \mathbf{w}_{2}^{T}=\left[\begin{array}{ll}
w_{2} & w_{2}^{\prime} \tag{SI-8}
\end{array}\right]
$$

and

$$
\begin{equation*}
\chi=\alpha-i \hat{\mathbf{G}}(r) \mathbf{w}_{2} \tag{SI-9}
\end{equation*}
$$

The extra factor 2 in Eq. (SI-7) results from the symmetry of $\mathbf{w}^{T} \mathbf{G w}$ with respect to $\mathbf{w}_{1}$ and $\mathbf{w}_{2}$.
Removing the singularity in the contour integrals turns them into regular integrals along the real axis, which can be calculated using the general result

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d w_{1} \ldots \int_{-\infty}^{+\infty} d w_{n} \quad e^{-\frac{1}{2} \mathbf{w}^{T} \mathbf{H} \mathbf{w}-i \mathbf{w}^{T} \cdot \mathbf{z}}=\frac{(2 \pi)^{n / 2}}{|\mathbf{H}|^{1 / 2}} e^{-\frac{1}{2} \mathbf{z}^{T} \mathbf{H}^{-1} \mathbf{z}} \tag{SI-10}
\end{equation*}
$$

which holds for any symmetric and positive-definite matrix H. Applying this formula to simplify Eq. (SI-7) leads to

$$
\begin{equation*}
\frac{\partial C_{O O}(r)}{\partial g_{Y Z}(0)}=\frac{-1}{4 \pi^{3}} \frac{1}{|\hat{G}(0)|^{1 / 2}} e^{-\frac{1}{2} \alpha^{T} \hat{\mathbf{G}}^{-1}(0) \alpha} \int_{C} \frac{d w_{2}}{w_{2}} \int_{C} \frac{d w_{2}^{\prime}}{w_{2}^{\prime}} e^{-i \mathbf{w}_{2}^{T} \cdot \mu-\frac{1}{2} \mathbf{w}_{2}^{T} \mathbf{H} \mathbf{w}_{2}} \tag{SI-11}
\end{equation*}
$$

with

$$
\begin{equation*}
\mu=\alpha-\hat{\mathbf{G}}(r) \hat{\mathbf{G}}^{-1}(0) \alpha \quad \text { and } \quad \mathbf{H}=\hat{\mathbf{G}}(0)-\hat{\mathbf{G}}(r) \hat{\mathbf{G}}^{-1}(0) \hat{\mathbf{G}}(r) \tag{SI-12}
\end{equation*}
$$

The double contour integral in Eq. (SI-11) can be conveniently expressed in terms of $\Lambda_{2}$. This eventually leads to the following final expression

$$
\begin{align*}
\frac{\partial C_{O O}(r)}{\partial g_{Y Z}(0)} & =\frac{1}{\pi \sqrt{1-g_{Y Z}^{2}(0)}} \exp \left(-\frac{\beta^{2}+\gamma^{2}-2 \beta \gamma g_{Y Z}(0)}{2\left(1-g_{Y Z}^{2}(0)\right)}\right) \\
& \times \Lambda_{2}\left[\binom{-\mu_{1} / \sqrt{h_{1}}}{-\mu_{2} / \sqrt{h_{2}}},\left(\begin{array}{cc}
1 & h_{12} / \sqrt{h_{1} h_{2}} \\
h_{12} / \sqrt{h_{1} h_{2}} & 1
\end{array}\right)\right] \tag{SI-13}
\end{align*}
$$

where $\mu_{1 / 2}$ and $h_{1 / 2 / 12}$ are the components of $\mu$ and $\mathbf{H}$. The latter are obtained through Eq. (SI-12) via successive matrix multiplications; the values are

$$
\begin{align*}
& \mu_{1}=\beta-\frac{1}{1-g_{Y Z}^{2}(0)}\left[\beta\left[g_{Y}(r)-g_{Y Z}(0) g_{Y Z}(r)\right]+\gamma\left[g_{Y Z}(r)-g_{Y}(r) g_{Y Z}(0)\right]\right]  \tag{SI-14}\\
& \mu_{2}=\gamma-\frac{1}{1-g_{Y Z}^{2}(0)}\left[\beta\left[g_{Y Z}(r)-g_{Z}(r) g_{Y Z}(0)\right]+\gamma\left[g_{Z}(r)-g_{Y Z}(0) g_{Y Z}(r)\right]\right] \tag{SI-15}
\end{align*}
$$

and

$$
\begin{gather*}
h_{1}=1-\frac{1}{1-g_{Y Z}^{2}(0)}\left[g_{Y}^{2}(r)+g_{Y Z}^{2}(r)-2 g_{Y}(r) g_{Y Z}(0) g_{Y Z}(r)\right]  \tag{SI-16}\\
h_{2}=1-\frac{1}{1-g_{Y Z}^{2}(0)}\left[g_{Z}^{2}(r)+g_{Y Z}^{2}(r)-2 g_{Z}(r) g_{Y Z}(0) g_{Y Z}(r)\right]  \tag{SI-17}\\
h_{12}=g_{Y Z}(0)-\frac{1}{1-g_{Y Z}^{2}(0)}\left[g_{Y Z}(r)\left[g_{Y}(r)+g_{Z}(r)\right]-g_{Y Z}(0)\left[g_{Y}(r) g_{Z}(r)+g_{Y Z}^{2}(r)\right]\right] \tag{SI-18}
\end{gather*}
$$

The partial derivative $\partial C_{O O} / \partial g_{Y Z}(r)$ can be calculated along the same lines as Eq. (SI-13). This leads to the following expression

$$
\begin{align*}
\frac{\partial C_{O O}(r)}{\partial g_{Y Z}(r)} & =\frac{1}{\pi \sqrt{1-g_{Y Z}^{2}(r)}} \exp \left(-\frac{\beta^{2}+\gamma^{2}-2 \beta \gamma g_{Y Z}(r)}{2\left(1-g_{Y Z}^{2}(r)\right)}\right) \\
& \times \Lambda_{2}\left[\binom{-\mu_{1}^{\prime} / \sqrt{h_{1}^{\prime}}}{-\mu_{2}^{\prime} / \sqrt{h_{2}^{\prime}}},\left(\begin{array}{cc}
1 & h_{12}^{\prime} / \sqrt{h_{1}^{\prime} h_{2}^{\prime}} \\
h_{12}^{\prime} / \sqrt{h_{1}^{\prime} h_{2}^{\prime}} & 1
\end{array}\right)\right] \tag{SI-19}
\end{align*}
$$

where $\mu_{1 / 2}^{\prime}$ and $h_{1 / 2 / 12}^{\prime}$ are obtained from Eqs. (SI-14), (SI-15), (SI-16), (SI-17) and (SI-18) by replacing $g_{Y Z}(0)$ with $g_{Y Z}(r)$ and vice versa.

The function $C_{O O}(r)$ can be viewed as being defined in a 4-dimensional parameter space, with dimensions $g_{Y}(r)$, $g_{Z}(r), g_{Y Z}(0)$ and $g_{Y Z}(r)$. Knowing the two partial derivatives $\partial C_{O O}(r) / \partial g_{Y Z}(0)$ and $\partial C_{O O}(r) / \partial g_{Y Z}(r)$ enables one to calculate the value of $C_{O O}(r)$ via a path integral in the corresponding $\left[g_{Y Z}(0), g_{Y Z}(r)\right]$ plane. In order to formalize this, we note that Eqs. (SI-13) and (SI-19) have the structure

$$
\begin{equation*}
\frac{\partial C_{O O}}{\partial x}=f(x, y) \quad \text { and } \quad \frac{\partial C_{O O}}{\partial y}=f(y, x) \tag{SI-20}
\end{equation*}
$$

where $x$ stands for $g_{Y Z}(0)$ and $y$ for $g_{Y Z}(r)$. A natural choice for the path along which to integrate is the straight line joining the points $[x=0 ; y=0]$ and $\left[x=g_{Y Z}(0) ; y=g_{Y Z}(r)\right]$, which can be parametrized as

$$
\begin{equation*}
x=t g_{Y Z}(0) \quad y=t g_{Y Z}(r) \tag{SI-21}
\end{equation*}
$$

where $t$ is an integration variable that takes values between 0 and 1 . Evaluating the path integral along this straight line leads to

$$
\begin{equation*}
C_{O O}(r)=\left.C_{O O}(r)\right|_{0}+g_{Y Z}(0) \int_{0}^{1} f\left(\operatorname{tg}_{Y Z}(0), t g_{Y Z}(r)\right) d t+g_{Y Z}(r) \int_{0}^{1} f\left(t g_{Y Z}(r), t g_{Y Z}(0)\right) d t \tag{SI-22}
\end{equation*}
$$

The starting point of the path, $\left.C_{O O}(r)\right|_{0}$, corresponds to the situation where $g_{Y Z}(r)=0$ for all $r$, which means that the fields $Y$ and $Z$ are independent. In this case the two-point function takes the value

$$
\begin{align*}
\left.C_{O O}(r)\right|_{0}= & \left\{1-2 \Lambda_{1}[\beta]+\Lambda_{2}\left[\binom{\beta}{\beta},\left(\begin{array}{cc}
1 & g_{Y}(r) \\
g_{Y}(r) & 1
\end{array}\right)\right]\right\} \\
& \times\left\{1-2 \Lambda_{1}[\gamma]+\Lambda_{2}\left[\binom{\gamma}{\gamma},\left(\begin{array}{cc}
1 & g_{Z}(r) \\
g_{Z}(r) & 1
\end{array}\right)\right]\right\} \tag{SI-23}
\end{align*}
$$

which results directly from Eq. (SI-2) if the fields $Y$ and $Z$ are independent from one another.
The specific surface area $a_{O}$ then obtained from Eq. (SI-1). For small values of $r$ the field correlation functions are quadratic, and their expressions are given by Eq. (4), (B8) and (B10) of the main text. Using these expressions in Eqs. (SI-14), (SI-15), (SI-16), (SI-17) and (SI-18), and neglecting all contributions of order $O\left(r^{3}\right)$, one obtains

$$
\begin{equation*}
\frac{\mu_{1}}{\sqrt{h_{1}}}=\frac{\nu_{1} r}{\sqrt{2} l_{Y}} \quad \frac{\mu_{2}}{\sqrt{h_{2}}}=\frac{\nu_{2} r}{\sqrt{2} l_{Z}} \quad \frac{h_{12}}{\sqrt{h_{1} h_{2}}}=g_{Y Z}(0) \frac{l_{Y} l_{Z}}{l_{Y Z}} \tag{SI-24}
\end{equation*}
$$

with

$$
\begin{equation*}
\nu_{1}=\beta+\frac{\left(\beta g_{Y Z}(0)-\gamma\right) g_{Y Z}(0)}{1-g_{Y Z}^{2}(0)}\left[1-\left(\frac{l_{Y}}{l_{Y Z}}\right)^{2}\right] \tag{SI-25}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{2}=\gamma+\frac{\left(\gamma g_{Y Z}(0)-\beta\right) g_{Y Z}(0)}{1-g_{Y Z}^{2}(0)}\left[1-\left(\frac{l_{Z}}{l_{Y Z}}\right)^{2}\right] \tag{SI-26}
\end{equation*}
$$

Introducing these expressions in Eq. (SI-13) leads to

$$
\begin{align*}
\frac{\partial C_{O O}}{\partial g_{Y Z}(0)} & =\frac{1}{\pi \sqrt{1-g_{12}^{2}(0)}} \exp \left(-\frac{\beta^{2}+\gamma^{2}-2 \beta \gamma g_{Y Z}(0)}{2\left(1-g_{Y Z}^{2}(0)\right)}\right) \\
& \times\left\{\frac{1}{4}+\frac{1}{4 \sqrt{\pi}}\left(\frac{\nu_{1}}{l_{Y}}+\frac{\nu_{2}}{l_{Z}}\right)+\frac{1}{2 \pi} \arcsin \left(g_{Y Z}(0) \frac{l_{Y} l_{Z}}{l_{Y Z}}\right)\right\}+O\left(r^{2}\right) \tag{SI-27}
\end{align*}
$$

If we proceed in the same way for Eq. (SI-19), i.e. starting with Eqs Eqs. (SI-14), (SI-15), (SI-16), (SI-17) and (SI-18) with $g_{Y Z}(0)$ exchanged with $g_{Y Z}(r)$, this eventually leads to

$$
\begin{equation*}
\frac{\mu_{1}^{\prime}}{\sqrt{h_{1}^{\prime}}}=\frac{\nu_{1}^{\prime} r}{\sqrt{2} l_{Y}} \quad \frac{\mu_{2}^{\prime}}{\sqrt{h_{2}^{\prime}}}=\frac{\nu_{2}^{\prime} r}{\sqrt{2} l_{Z}} \quad \frac{h_{12}^{\prime}}{\sqrt{h_{1}^{\prime} h_{2}^{\prime}}}=-g_{12}(0) \frac{l_{Y} l_{Z}}{l_{Y Z}} \tag{SI-28}
\end{equation*}
$$

with

$$
\begin{equation*}
\nu_{1}^{\prime}=\beta+\frac{\left(\beta g_{Y Z}(0)-\gamma\right) g_{Y Z}(0)}{1-g_{Y Z}^{2}(0)}\left[1+\left(\frac{l_{Y}}{l_{Y Z}}\right)^{2}\right] \tag{SI-29}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{2}^{\prime}=\gamma+\frac{\left(\gamma g_{Y Z}(0)-\beta\right) g_{Y Z}(0)}{1-g_{Y Z}^{2}(0)}\left[1+\left(\frac{l_{Z}}{l_{Y Z}}\right)^{2}\right] \tag{SI-30}
\end{equation*}
$$

We finally obtain

$$
\begin{align*}
\frac{\partial C_{O O}}{\partial g_{Y Z}(r)} & =\frac{1}{\pi \sqrt{1-g_{Y Z}^{2}(0)}} \exp \left(-\frac{\beta^{2}+\gamma^{2}-2 \beta \gamma g_{Y Z}(0)}{2\left(1-g_{Y Z}^{2}(0)\right)}\right) \\
& \times\left\{\frac{1}{4}+\frac{1}{4 \sqrt{\pi}}\left(\frac{\nu_{1}^{\prime}}{l_{Y}}+\frac{\nu_{2}^{\prime}}{l_{Y}}\right)-\frac{1}{2 \pi} \arcsin \left(g_{Y Z}(0) \frac{l_{Y} l_{Z}}{l_{Y Z}}\right)\right\}+O\left(r^{2}\right) \tag{SI-31}
\end{align*}
$$

If one introduces Eqs. (SI-27) and (SI-31) into Eq. (SI-22), one eventually finds Eq. (SI-1) with $\phi_{O}$ and $a_{O}$ given by Eqs. (21) and (23) of the main text, respectively.

