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1 Pressure tensor calculations

Irving and Kirkwood’s definition of the tangential pressure for a planar interface, using the molecular approach is
given by1:
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where nM(z), NM and λ (I) are the molecular COM number density, the number of molecules (o, w, H5T5) and
number of atoms within the Ith molecule respectively. Rα

com,IJ denotes the distance between the Jth and Ith COM in the
α direction, Rα

com,IJ = Rα
com,J −Rα

com,I and rα
IaJb stands for the distance between the bth atom within the Jth molecule

and the ath atom within the Ith molecule in the α direction, rα
IaJb = rα

Jb−rα
Ia; uab is interaction potential between atoms

of type a and b (where a and b can be o, w, H, T) and θ is the unit step function. PN(z) can be obtained by replacing
Rx

com,IJrx
IaJb +Ry

com,IJry
IaJb with 2Rz

com,IJrz
IaJb in Equation (S1). In this perspective, there is no explicit contribution

from intra-molecular interactions (i.e. bonded and non-bonded interaction potentials within surfactant molecules) in
the pressure tensor.

Using the atomic approach, the expression for the tangential component of the pressure tensor takes the form2:
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where nA(z), NA and rα
i j are the atomic number density, the number of atoms (o, w and surfactant segments H, T) and

the distance between the jth and the ith atoms in the α direction, rα
i j = rα

j − rα
i respectively. PN(z) can be obtained

by replacing (rx
i j)

2 +(ry
i j)

2 with 2(rz
i j)

2 in Equation (S2). The numerical implementation of this expression is easier
than Equation (S1) but one has to incorporate intra-molecular interaction contributions in the pressure tensor as well.
However, for a system in equilibrium, these two routes must give the same ensemble averages3–5.

We have divided the simulation box into 500 slabs in the z direction for both number density and pressure tensor
calculations. In the molecular (or atomic) approach, the molecules I and J (or the atoms i and j) contribute to the local
pressure in the slab located at z, if the slab contains the line that connects them. As a consequence of using periodic
boundary condition, all the pair distances have been calculated using the minimum image convention.
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2 Force matching scheme

We approximate the forcefield F by assuming a central pairwise interaction potential which is only a function of the
scalar distance between CG sites6–10:
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The corresponding CG force is then
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where FCG(x) = −dUCG(x)
dx . Now we set a cut-off distance xcut for our CG force field and mesh the interval [0 , xcut ]

into d− 1 subintervals with grid points {xi ; i = 1, ...,d} where x1 = 0 and xd = xcut . We consider a function space
consisting of linear spline basis functions { fi ; i = 1, ...,d}:
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to which FCG(x) belongs through a linear relation:

FCG(x) =
d

∑
i=1

φi fi(x) (S6)

which means FCG(x) is a continuous forcefield, linear within each subinterval
[
xi , xi+1

]
with the knot values {φi} at

the grid points {xi}. Combining Equations (S6) and (S4) together gives a linear relation for FI in terms of the fitting
parameters {φi} i.e.
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can be calculated directly from the coordinates of chain COMs and the basis functions. Plugging Equation (S7) into
the expression for the residual χ2(F), gives us a relation in terms of the fitting parameters {φi}:
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A normal solution of the least-squares problem (S9) can be determined by minimizing the residual χ2(F) with respect
to the {φi} vector, which results in a d×d linear system of equations. The solution can also be obtained equivalently
by solving an overdetermined linear system of equations of the form :
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in a least-squares sense6–10. The matrix equation (S10) (AΦ = f), is a 2Nintnt ×d linear system of equations formed
by equalizing the total force exerted on each CG site in terms of the unknown parameters {φi} with the total force on
the corresponding surfactant obtained from the reference simulation, projected onto the xy-plane.

Based on the sample size nt (which must be sufficiently large) and the number of surfactants adsorbed at each
interface plane Nint, storing the A matrix may require more than available computational memory so we approximate
the solution through using a block averaging (BA) procedure7–9. In the BA procedure, the nt reference samples are
partitioned into the nb disjoint blocks such that the A matrix is full rank in each block (which guarantees uniqueness
of the solution {φi} for each block). Subsequently, the matrix equation (S10) is solved for each block using the
LSQR11,12 algorithm (which is an iterative method for solving sparse linear equations and least squares) and the
results for the {φi} are averaged over all blocks.

After some trial and errors, the cut-off distance is set to xcut/σ = 5.0. A non-uniform grid (92 in total) with a
coarser grid mesh at near zero intermolecular separation is considered such that {xi/σ}= {0,0.5,0.55, . . . ,4.95,5.0}.
Total number of reference configurations nt = 5000 with each block consisting of roughly 12000 equations (e.g. 500
blocks of 10 configurations each, for the case of N = 1200 surfactants) is used in our BA procedure.
The CG interaction potential is a piecewise second order polynomial spline function (with continuous first order
derivatives at xi nodes) which is calculated by integrating Eq. S6 as

UCG(x) =
∫ xcut

x

d

∑
i=1

φi fi(x′)dx′, (S11)

and UCG(x) = 0 for x > xcut (no shift is needed as UCG(xcut) = 0 by construction).

3 Calculation of the coarse-grained pressure

While the evaluation of the standard virial expression (second term on the right hand side of Eq. 12) is routinely
done in molecular simulations, the last term in Eq 12 resulting from density-dependent effective interactions deserves
special attention. For isotropic and spatially homogeneous systems, this contribution can be expressed as13,14

Πcor(Γ) = πΓ
3
∫

∞

0
rg(r)

∂UCG(r; Γ)

∂Γ
dr, (S12)

where ∂UCG(r;Γ)
∂Γ

is to be determined for evaluating Πcor(Γ). To this end, we fit a smooth surface to discrete data points
{UCG(ri,Γ j)} obtained from MS-CG for different surface concentrations Γi, where Γi ∈ {0.117, 0.156, 0.195, 0.234}.
The surface fittings are done using MATLAB R2017b bicubic spline interpolations and the results for both symmetric
and asymmetric surfactants are plotted in Fig. S1.
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Figure S1 Fitted interaction potential surfaces for (a) symmetric and (b) asymmetric surfactants.

Using the fitted interaction potential surfaces, ∂UCG(r;Γ)
∂Γ

is evaluated at different surface concentrations for both
symmetric and asymmetric surfactants as depicted in Fig. S2.
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Figure S2 ∂UCG(r;Γ)
∂Γ

for (a) symmetric and (b) asymmetric surfactants at different surface concentrations.

The results for ∂UCG/∂Γ are then used to calculate Πcor by evaluating the integral on the R.H.S of the Eq. S12
numerically, as is shown in the Fig. S3.
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Figure S3 Corrections to the surface pressure due to the density dependence of the CG interaction potentials.

For the last two data points (the lowest surface concentrations) in both symmetric and asymmetric cases, we have
used ∂UCG

∂Γ
evaluated at Γ = 0.117 to calculate the integral in Eq. S12. Finally, we turn to the error estimation of

the coarse-grained pressure. We note that the uncertainty in Πcor is significantly larger than in the standard virial
contribution since the latter can be calculated from ensemble averages during the simulation while the former requires
knowledge of the concentration dependence of UCG which is usually not available “on the fly”. From Fig. S2, we
estimate the uncertainty in ∂UCG/∂Γ by comparing these data to smoothed curves.
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