## Supplementary information

## Nitrogen Electroreduction and Hydrogen Evolution on Cubic Molybdenum Carbide: A Density Functional Study

Ivana Matanovic<sup>a,b</sup> and Fernando H. Garzon<sup>\*a,c</sup>

<sup>a</sup> Chemical and Biological Engineering Department, Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131, USA

<sup>b</sup> Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

<sup>c</sup> Sandia National Laboratory, Albuquerque, NM 87131, USA

\*garzon@unm.edu

**Table S1.** Change in the free energies for the \*  $+ 1/2N_2 \rightarrow *N$  and \*+  $H^++e^- \rightarrow *H$  reactions (in eV) on different cubic MoC and MoC<sub>0.5</sub> surfaces. \* denotes a clean surface

| МоС                                    | [100] | [110]       | (111) | (111)* | (311)  |       |
|----------------------------------------|-------|-------------|-------|--------|--------|-------|
| Δ <sub>r</sub> G(*+H⁺+e⁻→*H)           | 0.61  | -0.12       | -0.40 | -0.69  | -0.45  |       |
| $\Delta_r G (*+1/2N_2 \rightarrow *N)$ | -0.49 | 0.17        | -1.20 | -0.90  | -0.38  |       |
| MoC <sub>0.5</sub>                     | (001) | (100)/(010) | (101) | (111)  | (111)* | (311) |
| Δ <sub>r</sub> G (*+H⁺+e⁻→*H)          | 0.48  | -0.35       | -0.39 | -0.65  | -0.59  | -0.78 |
| $\Delta_r G (*+1/2N_2 \rightarrow *N)$ | 0.63  | -0.08       | -0.39 | -2.09  | -1.97  | -1.89 |



**Figure S1.** Pourbaix diagram of cubic a) MoC and b) MoC<sub>0.5</sub> that shows the conditions under which the surface will likely be covered with H-adatoms (grey) or N-adatoms (white). The Pourbaix diagrams were constructed using  $\Delta_r G$  (\*+H<sup>+</sup>+e<sup>-</sup> $\rightarrow$ \*H) and  $\Delta_r G$  (\*+1/2N<sub>2</sub>  $\rightarrow$  \*N) values from Table S1. The full lines show the conditions under which  $\Delta_r G$  (\*+H<sup>+</sup>+e<sup>-</sup> $\rightarrow$ \*H) =  $\Delta_r G$  (\*+1/2N<sub>2</sub>  $\rightarrow$  \*N). Vertical arrows show how the stability region of H-adatoms changes with the change of the surface structure.