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Section S1 
Table S1 FF parameters of F-H2PPc adopted in classical MD simulations. 

ε (kcal/mol) σ (Å)
C 0.148 3.617
N 0.167 3.501
F 0.069 3.081
H 0.038 2.450
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Section S2

Fig. S1 (a) Top view and (b) side view of H2PPc after 10 ps first-principles MD simulation at 300 
K, and (c) temperature and (d) energy during the simulation. Grey, blue, and white balls stand for 
C, N, and H atoms.

Fig. S2 (a) Top view and (b) side view of F-H2PPc after 10 ps first-principles MD simulation at 
300 K, and (c) temperature and (d) energy during the simulation. Grey, blue, white, and cyan balls 
stand for C, N, H, and F atoms.
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Fig. S3 (a) Top view and (b) side view of Cl-H2PPc after 10 ps first-principles MD simulation at 
300 K, and (c) temperature and (d) energy during the simulation. Grey, blue, white and green balls 
stand for C, N, H and Cl atoms.

Fig. S4 (a) Top view and (b) side view of H2PPc after 10 ps first-principles MD simulation at 500 
K, and (c) temperature and (d) energy during the simulation. Grey, blue, and white balls stand for 
C, N, and H atoms.
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Fig. S5 (a) Top view and (b) side view of F-H2PPc after 10 ps first-principles MD simulation at 
500 K, and (c) temperature and (d) energy during the simulation. Grey, blue, white, and cyan balls 
stand for C, N, H, and F atoms.

Fig. S6 (a) Top view and (b) side view of Cl-H2PPc after 10 ps first-principles MD simulation at 
500 K, and (c) temperature and (d) energy during the simulation. Grey, blue, white and green balls 
stand for C, N, H and Cl atoms.
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Section S3
The involved structures all belong to the tetragonal crystal family of which only one 
in-plane Young’s modulus as well as one Poisson’s ratio along the x-direction 
(equivalent to y-direction) needs to be determined. In addition, the strength of studied 
membranes under uniaxial and biaxial tension is another important mechanical 
property that we expect to know. 
1. The in-plane Young’s modulus and Poisson’s ratio under infinitesimal strain 
theory

For the in-plane Young’s modulus (Y) and Poisson’s ratio (μ) calculations, we 
adopted the linear approximation of stress–strain relationship under infinitesimal 
strain of 0–0.05.1,2 As a result, the Hooke’s law in three-dimensional materials is
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in which the column matrices of stress and strain with Voigt notation3 represent the 
stress and strain tensor respectively:
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where  indicates that stress with j-direction orientation acts on the plane with an 𝜎𝑖𝑗

external normal direction of i,  means normal strain along the axis of i and  𝜀𝑖𝑖 𝛾𝑖𝑗

stands for shear strain between axes of i and j. The Cij matrix represents the elastic 
stiffness constant with twenty-one independent elements at most.3 The tetragonal 
crystal system with symmetry of D4h possesses six independent matrix elements as:3

(4)

(
𝐶11 𝐶12 𝐶13 0 0 0

 𝐶11 𝐶13 0 0 0
  𝐶33 0 0 0
   𝐶44 0 0
    𝐶44 0
     𝐶66

)
so we get a simple form by applying 3D Hooke’s law in two-dimensional studied 
monolayers:
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(5){𝜎1 = 𝐶11𝜀1 + 𝐶12𝜀2
𝜎2 = 𝐶12𝜀1 + 𝐶11𝜀2 �

According to the superposition principle under infinitesimal strain approximation:

(6)
{𝜀1 =

1
𝑌

(𝜎1 - 𝜇𝜎2)

𝜀2 =
1
𝑌

(𝜎2 - 𝜇𝜎1) �
from which we derived:

(7)
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So we easily obtained the in-plane Young’s modulus and the Poisson’s ratio as:

(8)
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𝐶 2
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�

Thus, two matrix elements of C11 and C12 should be known to calculate Y and μ. 
The density of structures’ total energy difference can be expressed as Taylor series 
expansion under the infinitesimal strain approximation:

(9)
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That is to say, let ε1 and ε2 vary from 0 to 0.03 by an increment of 0.005, we could get 
the value of C11 and C12 by fitting data of the density of total energy difference versus 
strain. Note that, the transformation of lattice vectors from  to  is computed by 𝑅 𝑅'

,1,4,5 in which  is the deformation gradient tensor and  is the 𝑅𝑖
' = 𝐹𝑅𝑖 = (𝜀 + 𝐼)𝑅𝑖 𝐹 𝐼

identity tensor. The fitted surfaces are drawn in Figure 1 in the main text.

2. The strength under finite strain theory
With respect to the strength of studied structures, i.e. the ultimate strain and the 

ultimate stress, the finite strain theory is employed instead of the infinitesimal strain 
approximation. The finite strain brings more specific definition of strain and stress 
and the curves of the second Piola–Kirchhoff (PK2) stress versus the Lagrangian 
strain are needed to observe the strength of materials. The Lagrangian strain is defined 
as:

(10)
𝜂 =

1
2

(𝐹𝑇𝐹 - 𝐼)
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For uniaxial tensions, the Lagrangian strain tensor and the deformation gradient tensor 
are respectively

(11)
𝜂𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 = (𝛿 0 0

0 0 0
0 0 0)

and

(12)
𝐹𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 = (𝜀 + 1 0 0

0 1 0
0 0 1)

Therefore, in a range of 0–0.3 with an increment of 0.02 for the Lagrangian strain 
element , we can obtain transformed structures by the transformation gradient tensor 𝛿
and compute their stresses by further. Note that the associated deformation gradient 
tensor is not unique for a given Lagrangian strain tensor, however only differing by a 
rigid rotation from one to another. Since the rigid deformation does not change the 
relative position of the atoms and the desired stress and energy,6,7 we take the most 
uncomplicated treatment of the deformation gradient tensor by ignoring the rigid 
motion without losing any useful information. For biaxial tensions, the Lagrangian 
strain tensor and the deformation gradient tensor are respectively:

(13)
𝜂𝑏𝑖𝑎𝑥𝑖𝑎𝑙 = (𝛿 0 0

0 𝛿 0
0 0 0)

and

(14)
𝐹𝑏𝑖𝑎𝑥𝑖𝑎𝑙 = (𝜀 + 1 0 0

0 𝜀 + 1 0
0 0 1)

with the same data spacing for the Lagrangian strain element . 𝛿
The stress calculated by the Vienna ab initio simulation package8 is the true or 

Cauchy stress, , which related to PK2 stress as:𝜎

(15)Σ = 𝑑𝑒𝑡⁡(𝐹)𝐹 - 1𝜎𝐹 - 𝑇

Because the uniaxial and biaxial tensions lead to two nonzero elements of the true 
stress tensor, the  can be written as:𝜎

(16)
𝜎 = (𝜎1 0 0

0 𝜎2 0
0 0 0)

Combined these equations, we deduce the PK2 stresses under uniaxial and biaxial 
tension are:

(17)

Σ𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 = ( 𝜎1

(𝜀 + 1)
0 0

0 (𝜀 + 1)𝜎2 0
0 0 0

)
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(18)
Σ𝑏𝑖𝑎𝑥𝑖𝑎𝑙 = (𝜎1 0 0

0 𝜎2 0
0 0 0)

The curves of two components of PK2 stress versus Lagrangian strain are drawn in 
Fig. S7.

Fig. S7 PK2 stress versus Lagrangian strain under uniaxial tension (x-direction) for (a) H2PPc, (c) 
F-H2PPc and (e) Cl-H2PPc and under biaxial tension for (b) H2PPc, (d) F-H2PPc and (f) Cl-H2PPc.
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Section S4
Table S2 Adsorption energy (eV) for H2, CO, CH4, CO2 and N2 adsorbing on pore-II of pristine, 
F- and Cl-H2PPc.

H2 CO CH4 CO2 N2

H2PPc 0.07 0.13 0.13 0.18 0.12
F-H2PPc 0.07 0.13 0.13 0.18 0.12
Cl-H2PPc 0.13 0.22 0.23 0.25 0.18
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Section S5
Table S3 Top view, side view and corresponding energy (eV) of the structures of IS, TS and FS 
for H2, CO, CH4, CO2 and N2 passing through pristine H2PPc.
Gas Property Initial State Transition State Final State

Top View

Side View

H2

Energy –1085.09 –1085.09 –1085.09

Top View

Side View

CO

Energy –1093.16 –1093.14 –1093.17

Top View

Side View

CH4

Energy –1102.44 –1102.45 –1102.44

Top View

Side View

CO2

Energy –1101.38 –1101.36 –1101.38

Top View

Side View

N2

Energy –1095.00 –1094.98 –1095.00



S12

Table S4 Top view, side view and corresponding energy (eV) of the structures of IS, TS and FS 
for H2, CO, CH4, CO2 and N2 passing through F-H2PPc.
Gas Property Initial State Transition State Final State

Top View

Side View

H2

Energy –1085.16 –1085.10 –1085.16

Top View

Side View

CO

Energy –1093.19 –1092.99 –1093.20

Top View

Side View

CH4

Energy –1102.50 –1101.88 –1102.50

Top View

Side View

CO2

Energy –1101.36 –1101.31 –1101.36

Top View

Side View

N2

Energy –1095.05 –1094.81 –1095.05
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Table S5 Top view, side view and corresponding energy (eV) of the structures of IS, TS and FS 
for H2, CO, CH4, CO2 and N2 passing through Cl-H2PPc.
Gas Property Initial State Transition State Final State

Top View

Side View

H2

Energy –1058.12 –1057.57 –1058.13

Top View

Side View

CO

Energy –1066.18 –1065.14 –1066.19

Top View

Side View

CH4

Energy –1075.46 –1074.09 –1075.46

Top View

Side View

CO2

Energy –1074.42 –1072.92 –1074.40

Top View

Side View

N2

Energy –1068.02 –1066.92 –1068.01
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Section S6

Fig. S8 Sketch of the minimum energy path for H2, CO, CH4 and N2 passing through F- and Cl-
H2PPc.

Fig. S9 Sketch of the minimum energy path for CO2 passing through F- and Cl-H2PPc.

Section S7

Fig. S10 Yellow areas stand for the pore areas in F- and Cl-H2PPc. Grey, blue, white, cyan and 
green balls stand for C, N, H, F and Cl atoms. Larger balls represent atoms with Reff at pore-I.
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