Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supporting Information

for

Ammonolysis of Ketene as a Potential Source of Amide in Troposphere : A Quantum Chemical Investigation

Saptarshi Sarkar,[‡] Subhasish Mallick,[‡] Pradeep Kumar^{*} and Biman Bandyopadhyay^{*}

Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017,India [‡]Equal contribution email: pradeep.chy@mnit.ac.in; biman.chy@mnit.ac.in

Table of contents

S.	Caption
No	
1	Figure S1 : ZPE corrected potential energy profile for hydrolysis (red) and ammonolysis (blue) at C=C and C=O bond of ketene calculated at the CCSD(T)/CBS//MP2/aug-cc-pVTZ level of theory
2	Table S1: Comparison of relative ZPE corrected energies (kcal mol ⁻¹) with the findings of earlier investigations for hydrolysis and ammonolysis of ketene
3	Table S2: Rate constants (cm ³ molecule ⁻¹ s ⁻¹) for ammonolysis of ketene at different temperatures within 200 to 2500 K using TST theory
4	Table S3: Rate constants (cm ³ molecule ⁻¹ s ⁻¹) for the hydrolysis of KM at different temperatures 200 to 2500 K using TST theory
5	Table S4: Rate constants (cm ³ molecule ⁻¹ s ⁻¹) for ammonolysis of ketene at different temperatures within 200 to 2500 K using RRKM theory
6	Table S5: Rate constants (cm ³ molecule ⁻¹ s ⁻¹) for the hydrolysis of KM at different temperatures 200 to 2500 K using RRKM theory
7	Table S6: Concentrations of WM and AM (molecules cm ⁻³) at various altitudes in troposphere
8	Table S7: Concentrations of AM and WM (molecules cm ⁻³) within 280K to 320K at 0 km altitude
9	Table S8: Absolute energies (Hartree) of all the species involved in hydrolysis and ammonolysis of ketene calculated at the two different levels of theory
10	Table S9: Relative ZPE corrected energies (kcal mol ⁻¹) of all species with respect to the isolated reactants calculated using two different levels of theory
11	Table S10: Optimized geometries in Cartesian coordinates and normal mode frequencies of all species calculated at MP2/aug-cc-pVTZ level of theory
12	References

Table S1: Comparison of relative ZPE corrected energies (kcal mol⁻¹) with the findings of earlier investigations for hydrolysis and ammonolysis of ketene

Species	This Work	Nguyen et al. ^{a,1}	Nguyen et al. ^{b,2}	Cannizzaro et al. ^{c,3}
^{WM} RC	-2.0	-	-	-
WMTS _{CC}	42.3	42.7	40.6	42.0
AA	-32.0	-32.2	-38.5	-34.4
WMTS-1 _{CO}	38.2	38.6	38.5	38.2
^{WM} IM _{CO}	-4.7	-5.9	-6.5	-6.6
^{WM} TS-2 _{CO}	39.1	39.3	39.0	38.7

a: Hydrolysis

^a– Calculated at CCSD(T)/CBS(aVTZ,aVQZ) level of theory

^b– Calculated at QCISD(T)/6-31G(d,p)//MP2/6-31G(d,p) level of theory

^c– Calculated at G2//MCSCF/6-31G(d) level of theory

b: Ammonolysis

Species	This Work	Raspoet et al. ^{a,4}	Sung et al. ^{b,5}	Chang Kon Kim et al. ^{c,6}
AMRC	-2.2	-	-3.04	-
$^{AM}TS_{CC}$	40.3	41.4	39.80	39.71
AC	-32.4	-32.6	-37.60	-34.78
AMTS-1 _{CO}	28.3	31.4	30.03	28.67
^{AM} IM _{CO}	-9.0	-2.6	-5.90	-6.32
AMTS-2 _{CO}	31.3	-	33.13	31.52

^a- Calculated at QCISD(T)/6-311++G(d,p) level of theory

^b– Calculated at MP2/6-31G* level of theory

^c– Calculated at MP2/6-31+G(d,p)//B3LYP/6-311+G(3df,2p) level of theory

Table S2: Rate constants (cm³ molecule⁻¹ s⁻¹) for ammonolysis of ketene at different temperatures within 200 to 2500 K using TST theory

		k_{CC}^{AC}				k_{CO}^{AC}			, AC
T(K)	kea	kuni	k _{CC}	kea	k ₁	k.1	k ₂	k _{co}	K _{tot}
213	4.3×10 ⁻²³	1.9×10 ⁻²⁰	4.9×10 ⁻⁴²	4.3×10 ⁻²³	1.0×10 ⁻¹³	8.0×10 ⁻¹⁹	2.4×10 ⁻¹⁵	2.7×10 ⁻³⁵	2.7×10 ⁻³⁵
216	4.1×10 ⁻²³	2.4×10 ⁻²⁰	5.9×10 ⁻⁴²	4.1×10 ⁻²³	1.3×10 ⁻¹³	1.3×10 ⁻¹⁸	3.0×10 ⁻¹⁵	3.2×10 ⁻³⁵	3.2×10 ⁻³⁵
219	3.8×10 ⁻²³	3.0×10 ⁻²⁰	7.0×10 ⁻⁴²	3.8×10 ⁻²³	1.7×10 ⁻¹³	2.2×10 ⁻¹⁸	3.7×10 ⁻¹⁵	3.9×10 ⁻³⁵	3.9×10 ⁻³⁵
224	3.5×10 ⁻²³	4.5×10 ⁻²⁰	9.5×10 ⁻⁴²	3.5×10 ⁻²³	2.6×10 ⁻¹³	5.2×10 ⁻¹⁸	5.4×10 ⁻¹⁵	5.4×10 ⁻³⁵	5.4×10 ⁻³⁵
230	3.1×10 ⁻²³	7.4×10 ⁻²⁰	1.4×10^{-41}	3.1×10 ⁻²³	4.3×10 ⁻¹³	1.4×10^{-17}	8.4×10 ⁻¹⁵	8.1×10 ⁻³⁵	8.1×10 ⁻³⁵
235	2.9×10 ⁻²³	1.1×10 ⁻¹⁹	1.9×10 ⁻⁴¹	2.9×10 ⁻²³	6.7×10^{-13}	3.1×10 ⁻¹⁷	1.2×10 ⁻¹⁴	1.2×10 ⁻³⁴	1.2×10 ⁻³⁴
250	2.3×10 ⁻²³	4.0×10 ⁻¹⁹	5.6×10^{-41}	2.3×10 ⁻²³	2.5×10^{-12}	3.4×10 ⁻¹⁶	3.9×10^{-14}	3.5×10 ⁻³⁴	3.5×10^{-34}
259	2.1×10^{-23}	8.8×10 ⁻¹⁹	1.1×10^{-40}	2.1×10^{-23}	5.7×10^{-12}	1.4×10^{-15}	8.0×10^{-14}	6.9×10 ⁻³⁴	6.9×10^{-34}
280	1.7×10^{-23}	6.1×10 ⁻¹⁸	6.1×10^{-40}	1.7×10^{-23}	4.0×10^{-11}	3.3×10^{-14}	4.4×10^{-13}	3.6×10^{-33}	3.6×10^{-33}
290	1.5×10^{-23}	1.6×10^{-17}	1.4×10^{-39}	1.5×10^{-23}	1.0×10 ⁻¹⁰	1.5×10^{-13}	1.0×10^{-12}	8.0×10 ⁻³³	8.0×10 ⁻³³
298	1.4×10^{-23}	3.5×10^{-17}	3.0×10^{-39}	1.4×10^{-23}	2.2×10 ⁻¹⁰	4.6×10^{-13}	2.0×10^{-12}	1.5×10^{-32}	1.5×10^{-32}
300	1.1 ± 10^{-23}	4.3×10^{-17}	3.5×10^{-39}	1.1 ± 10^{-23}	2.6×10 ⁻¹⁰	6.2×10 ⁻¹³	2.0^{-10}	$1.5 \ 10^{-32}$	$1.5 \ 10^{-32}$
310	$1.7 10^{-23}$	1.5×10^{-16}	9.0×10 ⁻³⁹	1.7 10 1 3×10 ⁻²³	6.8×10^{-10}	2.5×10^{-12}	5.8×10^{-12}	3.6×10^{-32}	3.6×10^{-32}
320	$1.5 \cdot 10^{-23}$	3.2×10^{-16}	2.3×10^{-38}	1.0^{-23}	1.7×10 ⁻⁰⁹	1.0×10^{-11}	1.4×10^{-11}	7 3×10 ⁻³²	7.3×10^{-32}
520	1,2.10	5.2.10	2.5.10	1,2.10	1.7.10	1.0.10	1.4*10	7.5.10	7.5.10
200	5.8×10^{-23}	7 1×10 ⁻²¹	2 5×10 ⁻⁴²	5 8×10 ⁻²³	3.6×10 ⁻¹⁴	8 1×10 ⁻²⁰	9 4×10 ⁻¹⁶	1 2×10 ⁻³⁵	1 2×10 ⁻³⁵
250	2.3×10^{-23}	4.0×10^{-19}	5.6×10^{-41}	2.3×10^{-23}	2.5×10^{-12}	3.4×10^{-16}	3.4×10^{-14}	3.5×10^{-34}	3.5×10^{-34}
300	1.3×10^{-23}	4.0×10^{-17}	3.5×10^{-39}	1.3×10^{-23}	2.5×10^{-10}	6.2×10^{-13}	2.4×10^{-12}	1.7×10^{-32}	1.7×10^{-32}
350	$1.4 \cdot 10^{-23}$	7.7×10^{-15}	4.8×10^{-37}	$1.4 \cdot 10^{-23}$	2.0^{-08}	5.2×10^{-10}	2.4×10^{-10}	4 8×10 ⁻³¹	4.8×10^{-31}
400	8.6×10^{-24}	1.5×10^{-12}	7.8×10^{-35}	8.6×10 ⁻²⁴	1 7×10 ⁻⁰⁶	1.6×10^{-07}	2.1^{-10}	1.0×10^{-29}	1.0×10^{-29}
450	7.8×10 ⁻²⁴	1.5 ⁻¹⁰	8 1×10 ⁻³³	7.8×10 ⁻²⁴	5.3×10 ⁻⁰⁵	1.8×10 ⁻⁰⁵	1.8×10^{-06}	2 2×10 ⁻²⁸	2.2×10 ⁻²⁸
500	7.0 ⁻²⁴	9.7×10 ⁻⁰⁹	4.3×10^{-31}	7.6 ± 10^{-24}	9.0×10 ⁻⁰⁴	8.8×10 ⁻⁰⁴	8.8×10 ⁻⁰⁵	3.7×10^{-27}	3.7×10^{-27}
550	7 3×10 ⁻²⁴	2 9×10 ⁻⁰⁷	1 3×10 ⁻²⁹	7.1 ± 10^{-24}	9.6×10 ⁻⁰³	2.2×10 ⁻⁰²	2.5×10^{-03}	4.2×10^{-26}	4.2×10^{-26}
600	$7.5 \ 10^{-24}$	5.0×10^{-06}	2.2×10^{-28}	$7.5 \cdot 10^{-24}$	7.0×10^{-02}	3 3×10 ⁻⁰¹	4.2×10^{-02}	3.5×10^{-25}	3.5×10^{-25}
650	7.4^{10}	5.8×10 ⁻⁰⁵	2.2×10^{-27}	7.4×10^{-24}	3.8×10 ⁻⁰¹	33	4.2×10^{-01}	2 2×10 ⁻²⁴	2.5×10^{-24}
700	8.0×10^{-24}	4.8×10^{-04}	2.7×10^{-26}	8.0×10 ⁻²⁴	1.6	2.4×10^{01}	4.5 ¹ 10	1 1×10 ⁻²³	1.1×10^{-23}
750	8.4×10^{-24}	3.0×10^{-03}	1.5×10^{-25}	8.4×10 ⁻²⁴	5.7	1.4×10^{02}	2.6×10^{01}	4.1^{-23}	4.6×10^{-23}
800	8.9×10 ⁻²⁴	1.5×10^{-02}	8.0×10 ⁻²⁵	8.9×10 ⁻²⁴	1.7×10 ⁰¹	6.3×10^{02}	1.3×10^{02}	1.6×10^{-22}	1.6×10^{-22}
850	9.4×10^{-24}	6 3×10 ⁻⁰²	3.6×10^{-24}	9.4×10^{-24}	4.6×10^{01}	2.4×10^{03}	5.7×10^{02}	5 0×10 ⁻²²	5.0×10^{-22}
900	1.0×10^{-23}	2.3×10 ⁻⁰¹	1 4×10 ⁻²³	1.0×10^{-23}	1.0 10 1.1×10 ⁰²	8.0×10 ⁰³	2.1×10^{03}	1.4×10^{-21}	1 4×10 ⁻²¹
950	1.1×10 ⁻²³	7.0×10 ⁻⁰¹	4.5×10^{-23}	1.1×10 ⁻²³	2.4×10^{02}	2.3×10 ⁰⁴	6.6×10^{03}	3.4×10^{-21}	3.5×10^{-21}
1000	1.1×10^{-23}	2.0	1.4×10 ⁻²²	1.1×10 ⁻²³	4.9×10^{02}	6.2×10 ⁰⁴	1.9×10^{04}	7.9×10 ⁻²¹	8.0×10 ⁻²¹
1050	1.1 10	5.0	3.7×10 ⁻²²	1.1×10^{-23}	9.4×10 ⁰²	1.5×10^{05}	4.9×10^{04}	1.7×10^{-20}	1 7×10 ⁻²⁰
1100	$1.2 10^{-23}$	1.2×10 ⁰¹	9.2×10 ⁻²²	$1.2 10^{-23}$	1.7×10^{03}	3 3×10 ⁰⁵	1.2×10 ⁰⁵	3.4×10^{-20}	3.5×10^{-20}
1150	$1.5 \ 10^{-23}$	2.6×10 ⁰¹	2.2×10^{-21}	1.0^{-23}	2.9×10^{03}	6.9×10 ⁰⁵	2.6×10^{05}	6.5×10 ⁻²⁰	6.7×10^{-20}
1200	$1.7 10^{-23}$	5.2×10^{01}	4.7×10^{-21}	$1.7 10^{-23}$	4.7×10^{03}	1.3×10^{06}	5.3×10^{05}	1 2×10 ⁻¹⁹	1.2×10^{-19}
1250	$1.5 \ 10^{-23}$	1.0×10^{02}	9.7×10 ⁻²¹	$1.5 \ 10^{-23}$	7.3×10^{03}	2.5×10^{06}	1.0×10^{06}	2 1×10 ⁻¹⁹	2.2×10^{-19}
1300	1.0^{-23}	1.0×10 ⁰²	1 9×10 ⁻²⁰	1.0^{-23}	1.1×10^{04}	4.4×10^{06}	1.0^{-10} 1.9×10 ⁰⁶	3 5×10 ⁻¹⁹	3.7×10^{-19}
1350	1.7×10^{-23}	3.3×10^{02}	3.6×10^{-20}	1.7×10^{-23}	1.1^{-10} 1.6×10 ⁰⁴	7.6×10^{06}	3.5×10^{06}	5.5^{-10}	6.0×10 ⁻¹⁹
1400	2.0×10^{-23}	5.5×10^{02}	6.5×10^{-20}	2.0×10^{-23}	2.3×10^{04}	1.0°10	5.9×10^{06}	8.9×10 ⁻¹⁹	9.5×10 ⁻¹⁹
1450	2.0 ± 10^{-23}	9.0×10 ⁰²	1.1×10^{-19}	2.0 ± 10^{-23}	3.3×10^{04}	2.0×10 ⁰⁷	9.8×10 ⁰⁶	1.4×10^{-18}	1.5×10^{-18}
1500	2.1×10^{-23}	1.4×10^{03}	1.1 10 1.9×10 ⁻¹⁹	2.1 ± 10^{-23}	4.5×10^{04}	3.0×10^{07}	1.6×10^{07}	2.0×10^{-18}	2.2×10 ⁻¹⁸
1550	2.4×10^{-23}	2.2×10^{03}	3.1×10^{-19}	2.4×10^{-23}	6.0×10 ⁰⁴	4.5×10^{07}	2.4×10^{07}	3.0×10^{-18}	3.3×10^{-18}
1600	2.5×10^{-23}	3.3×10 ⁰³	4.9×10^{-19}	2.5×10^{-23}	7.9×10^{04}	6.6×10 ⁰⁷	3.6×10^{07}	4.3×10^{-18}	4.7×10^{-18}
1650	2.7×10^{-23}	4.8×10 ⁰³	7.6×10 ⁻¹⁹	2.7×10^{-23}	1.0×10 ⁰⁵	9.4×10 ⁰⁷	5.4×10 ⁰⁷	6.0×10 ⁻¹⁸	6.7×10 ⁻¹⁸
1700	2.8×10 ⁻²³	6.8×10 ⁰³	1.2×10 ⁻¹⁸	2.8×10 ⁻²³	1.3×10 ⁰⁵	1.3×10 ⁰⁸	7.7×10 ⁰⁷	8.3×10 ⁻¹⁸	9.4×10 ⁻¹⁸
1750	3.0×10 ⁻²³	9.6×10 ⁰³	1.7×10 ⁻¹⁸	3.0×10 ⁻²³	1.7×10 ⁰⁵	1.8×10 ⁰⁸	1.1×10 ⁰⁸	1.1×10 ⁻¹⁷	1.3×10 ⁻¹⁷
1800	3.2×10 ⁻²³	1.3×10 ⁰⁴	2.5×10 ⁻¹⁸	3.2×10 ⁻²³	2.1×10 ⁰⁵	2.4×10 ⁰⁸	1.5×10 ⁰⁸	1.5×10 ⁻¹⁷	1.8×10 ⁻¹⁷
1850	3.4×10 ⁻²³	1.8×10 ⁰⁴	3.6×10 ⁻¹⁸	3.4×10 ⁻²³	2.5×10 ⁰⁵	3.2×10 ⁰⁸	2.1×10 ⁰⁸	2.0×10 ⁻¹⁷	2.3×10 ⁻¹⁷
1900	3.6×10 ⁻²³	2.4×10 ⁰⁴	5.1×10 ⁻¹⁸	3.6×10 ⁻²³	3.1×10 ⁰⁵	4.2×10 ⁰⁸	2.8×10 ⁰⁸	2.6×10 ⁻¹⁷	3.1×10 ⁻¹⁷
1950	3.8×10 ⁻²³	3.1×10 ⁰⁴	7.0×10 ⁻¹⁸	3.8×10 ⁻²³	3.7×10 ⁰⁵	5.5×10 ⁰⁸	3.6×10 ⁰⁸	3.3×10 ⁻¹⁷	4.1×10 ⁻¹⁷

-										
ſ	2000	4.0×10 ⁻²³	4.0×10 ⁰⁴	9.6×10 ⁻¹⁸	4.0×10 ⁻²³	4.4×10 ⁰⁵	7.0×10 ⁰⁸	4.7×10 ⁰⁸	4.3×10 ⁻¹⁷	5.2×10 ⁻¹⁷
	2050	4.2×10 ⁻²³	5.1×10 ⁰⁴	1.3×10 ⁻¹⁷	4.2×10 ⁻²³	5.2×10 ⁰⁵	8.8×10 ⁰⁸	6.1×10 ⁰⁸	5.4×10 ⁻¹⁷	6.7×10 ⁻¹⁷
	2100	4.4×10 ⁻²³	6.5×10 ⁰⁴	1.7×10 ⁻¹⁷	4.4×10 ⁻²³	6.1×10 ⁰⁵	1.1×10 ⁰⁹	7.7×10 ⁰⁸	6.8×10 ⁻¹⁷	8.5×10 ⁻¹⁷
	2150	4.7×10 ⁻²³	8.1×10 ⁰⁴	2.3×10 ⁻¹⁷	4.7×10 ⁻²³	7.2×10 ⁰⁵	1.4×10 ⁰⁹	9.7×10 ⁰⁸	8.4×10 ⁻¹⁷	1.1×10 ⁻¹⁶
	2200	4.9×10 ⁻²³	1.0×10 ⁰⁵	3.0×10 ⁻¹⁷	4.9×10 ⁻²³	8.3×10°5	1.7×10 ⁰⁹	1.2×10 ⁰⁹	1.0×10^{-16}	1.3×10 ⁻¹⁶
	2250	5.2×10 ⁻²³	1.2×10 ⁰⁵	3.8×10 ⁻¹⁷	5.2×10 ⁻²³	9.5×10°5	2.0×10 ⁰⁹	1.5×10 ⁰⁹	1.3×10^{-16}	1.6×10 ⁻¹⁶
ſ	2300	5.4×10 ⁻²³	1.5×10°5	4.9×10 ⁻¹⁷	5.4×10 ⁻²³	1.1×10 ⁰⁶	2.4×10 ⁰⁹	1.8×10 ⁰⁹	1.5×10^{-16}	2.0×10 ⁻¹⁶
ſ	2350	5.7×10 ⁻²³	1.8×10 ⁰⁵	6.2×10 ⁻¹⁷	5.7×10 ⁻²³	1.2×10 ⁰⁶	2.9×10 ⁰⁹	2.2×10 ⁰⁹	1.8×10^{-16}	2.5×10 ⁻¹⁶
	2400	6.0×10 ⁻²³	2.2×10 ⁰⁵	7.8×10 ⁻¹⁷	6.0×10 ⁻²³	1.4×10 ⁰⁶	3.4×10 ⁰⁹	2.7×10 ⁰⁹	2.2×10 ⁻¹⁶	3.0×10 ⁻¹⁶
	2450	6.3×10 ⁻²³	2.6×10 ⁰⁵	9.7×10 ⁻¹⁷	6.3×10 ⁻²³	1.6×10 ⁰⁶	4.0×10 ⁰⁹	3.2×10 ⁰⁹	2.6×10 ⁻¹⁶	3.6×10 ⁻¹⁶
	2500	6.6×10 ⁻²³	3.0×10 ⁰⁵	1.2×10 ⁻¹⁶	6.6×10 ⁻²³	1.8×10 ⁰⁶	4.7×10 ⁰⁹	3.8×10 ⁰⁹	3.1×10 ⁻¹⁶	4.3×10 ⁻¹⁶

Table S3: Rate constants (cm³ molecule⁻¹ s⁻¹) for the hydrolysis of KM at different temperatures 200 to 2500 K using TST theory

		k_{CC}^{AA}				k_{CO}^{AA}			k ^{AA}
T(K)	k _{eq}	k _{uni}	k _{cc}	k _{eq}	\mathbf{k}_1	k.1	\mathbf{k}_2	\mathbf{k}_{CO}	κ _{tot}
213	4.1×10 ⁻²³	2.0×10 ⁻²²	3.3×10 ⁻⁴⁴	5.0×10 ⁻²³	1.8×10 ⁻²²	2.1×10 ⁻²³	3.2×10 ⁻¹⁶	3.6×10 ⁻⁴⁴	6.9×10 ⁻⁴⁴
216	3.9×10 ⁻²³	2.6×10 ⁻²²	4.1×10 ⁻⁴⁴	4.7×10 ⁻²³	2.7×10 ⁻²²	3.7×10 ⁻²³	3.9×10 ⁻¹⁶	5.1×10 ⁻⁴⁴	9.2×10 ⁻⁴⁴
219	3.7×10 ⁻²³	3.4×10 ⁻²²	5.1×10 ⁻⁴⁴	4.5×10 ⁻²³	4.0×10 ⁻²²	6.2×10 ⁻²³	4.8×10 ⁻¹⁶	7.2×10 ⁻⁴⁴	1.2×10 ⁻⁴³
224	3.4×10 ⁻²³	5.4×10 ⁻²²	7.5×10 ⁻⁴⁴	4.1×10 ⁻²³	7.8×10 ⁻²²	1.5×10 ⁻²²	6.6×10 ⁻¹⁶	1.3×10 ⁻⁴³	2.0×10 ⁻⁴³
230	3.1×10 ⁻²³	9.5×10 ⁻²²	1.2×10 ⁻⁴³	3.8×10 ⁻²³	1.8×10 ⁻²¹	4.3×10 ⁻²²	1.0×10 ⁻¹⁵	2.7×10 ⁻⁴³	3.9×10 ⁻⁴³
235	2.9×10 ⁻²³	1.5×10 ⁻²¹	1.8×10 ⁻⁴³	3.5×10 ⁻²³	3.5×10 ⁻²¹	1.0×10 ⁻²¹	1.4×10 ⁻¹⁵	4.9×10 ⁻⁴³	6.7×10 ⁻⁴³
250	2.4×10 ⁻²³	6.7×10 ⁻²¹	6.5×10 ⁻⁴³	2.9×10 ⁻²³	2.7×10 ⁻²⁰	1.4×10 ⁻²⁰	4.0×10 ⁻¹⁵	3.1×10 ⁻⁴²	3.8×10 ⁻⁴²
259	2.2×10 ⁻²³	1.7×10 ⁻²⁰	1.5×10 ⁻⁴²	2.7×10 ⁻²³	9.3×10 ⁻²⁰	6.6×10 ⁻²⁰	7.7×10 ⁻¹⁵	9.8×10 ⁻⁴²	1.1×10 ⁻⁴¹
280	1.8×10 ⁻²³	1.6×10 ⁻¹⁹	1.1×10^{-41}	2.2×10 ⁻²³	1.7×10 ⁻¹⁸	2.4×10 ⁻¹⁸	3.6×10 ⁻¹⁴	1.5×10^{-40}	1.6×10 ⁻⁴⁰
290	1.7×10 ⁻²³	4.7×10 ⁻¹⁹	3.1×10 ⁻⁴¹	2.0×10 ⁻²³	6.9×10 ⁻¹⁸	1.3×10 ⁻¹⁷	7.8×10 ⁻¹⁴	5.6×10^{-40}	5.9×10 ⁻⁴⁰
298	1.6×10 ⁻²³	1.1×10 ⁻¹⁸	7.3×10 ⁻⁴¹	1.9×10 ⁻²³	2.1×10 ⁻¹⁷	4.9×10 ⁻¹⁷	1.4×10 ⁻¹³	1.6×10^{-39}	1.7×10 ⁻³⁹
300	1.6×10 ⁻²³	1.4×10 ⁻¹⁸	9.0×10 ⁻⁴¹	1.9×10 ⁻²³	2.8×10 ⁻¹⁷	6.8×10 ⁻¹⁷	1.7×10 ⁻¹³	2.1×10 ⁻³⁹	2.2×10 ⁻³⁹
310	1.5×10 ⁻²³	4.6×10 ⁻¹⁸	2.7×10 ⁻⁴⁰	1.8×10 ⁻²³	1.1×10 ⁻¹⁶	3.5×10 ⁻¹⁶	3.7×10 ⁻¹³	8.1×10 ⁻³⁹	8.3×10 ⁻³⁹
320	1.4×10 ⁻²³	1.5×10 ⁻¹⁷	8.2×10 ⁻⁴⁰	1.7×10 ⁻²³	4.5×10 ⁻¹⁶	1.8×10 ⁻¹⁵	8.2×10 ⁻¹³	3.0×10 ⁻³⁸	3.1×10 ⁻³⁸
200	5.4×10 ⁻²³	6.4×10 ⁻²³	1.4×10 ⁻⁴⁴	6.4×10 ⁻²³	3.3×10 ⁻²³	2.1×10 ⁻²⁴	1.4×10 ⁻¹⁶	8.4×10 ⁻⁴⁵	2.2×10 ⁻⁴⁴
250	2.4×10 ⁻²³	6.7×10 ⁻²¹	6.5×10 ⁻⁴³	2.9×10 ⁻²³	2.7×10 ⁻²⁰	1.4×10 ⁻²⁰	4.0×10 ⁻¹⁵	3.1×10 ⁻⁴²	3.8×10 ⁻⁴²
300	1.6×10 ⁻²³	1.4×10 ⁻¹⁸	9.0×10 ⁻⁴¹	1.9×10 ⁻²³	2.8×10 ⁻¹⁷	6.8×10 ⁻¹⁷	1.7×10 ⁻¹³	2.1×10 ⁻³⁹	2.2×10 ⁻³⁹
350	1.2×10 ⁻²³	5.5×10 ⁻¹⁶	2.7×10 ⁻³⁸	1.5×10 ⁻²³	2.4×10 ⁻¹⁴	1.9×10 ⁻¹³	9.9×10 ⁻¹²	1.4×10^{-36}	1.4×10 ⁻³⁶
400	1.1×10 ⁻²³	1.9×10 ⁻¹³	8.1×10 ⁻³⁶	1.3×10 ⁻²³	8.3×10 ⁻¹²	1.6×10 ⁻¹⁰	7.6×10 ⁻¹⁰	3.6×10 ⁻³⁴	3.6×10 ⁻³⁴
450	1.0×10 ⁻²³	3.2×10 ⁻¹¹	1.3×10 ⁻³³	1.2×10 ⁻²³	1.0×10 ⁻⁰⁹	4.1×10 ⁻⁰⁸	5.9×10 ⁻⁰⁸	2.9×10 ⁻³²	3.0×10 ⁻³²
500	9.9×10 ⁻²⁴	2.3×10 ⁻⁰⁹	9.3×10 ⁻³²	1.2×10 ⁻²³	5.1×10 ⁻⁰⁸	3.9×10 ⁻⁰⁶	3.2×10 ⁻⁰⁶	1.1×10^{-30}	1.2×10 ⁻³⁰
550	1.0×10 ⁻²³	8.6×10 ⁻⁰⁸	3.4×10 ⁻³⁰	1.2×10 ⁻²³	1.3×10 ⁻⁰⁶	1.7×10 ⁻⁰⁴	1.1×10 ⁻⁰⁴	2.4×10 ⁻²⁹	2.8×10 ⁻²⁹
600	1.0×10 ⁻²³	1.8×10 ⁻⁰⁶	7.4×10 ⁻²⁹	1.3×10 ⁻²³	2.0×10 ⁻⁰⁵	4.1×10 ⁻⁰³	2.2×10 ⁻⁰³	3.5×10 ⁻²⁸	4.2×10 ⁻²⁸
650	1.1×10 ⁻²³	2.4×10 ⁻⁰⁵	1.0×10 ⁻²⁷	1.3×10 ⁻²³	2.0×10 ⁻⁰⁴	6.1×10 ⁻⁰²	3.0×10 ⁻⁰²	3.5×10 ⁻²⁷	4.5×10 ⁻²⁷
700	1.1×10 ⁻²³	2.2×10 ⁻⁰⁴	1.0×10 ⁻²⁶	1.4×10 ⁻²³	1.5×10 ⁻⁰³	6.2×10 ⁻⁰¹	2.9×10 ⁻⁰¹	2.6×10 ⁻²⁶	3.6×10 ⁻²⁶
750	1.2×10 ⁻²³	1.5×10 ⁻⁰³	7.4×10 ⁻²⁶	1.5×10 ⁻²³	8.3×10 ⁻⁰³	4.7	2.1	1.5×10 ⁻²⁵	2.3×10 ⁻²⁵
800	1.3×10 ⁻²³	8.4×10 ⁻⁰³	4.4×10 ⁻²⁵	1.6×10 ⁻²³	3.8×10 ⁻⁰²	2.8×10 ⁰¹	1.2×10 ⁰¹	7.3×10 ⁻²⁵	1.2×10 ⁻²⁴
850	1.4×10 ⁻²³	3.8×10 ⁻⁰²	2.1×10 ⁻²⁴	1.7×10 ⁻²³	1.4×10 ⁻⁰¹	1.4×10 ⁰²	5.8×10 ⁰¹	3.0×10 ⁻²⁴	5.1×10 ⁻²⁴
900	1.5×10 ⁻²³	1.4×10 ⁻⁰¹	8.7×10 ⁻²⁴	1.8×10 ⁻²³	4.8×10 ⁻⁰¹	5.5×10 ⁰²	2.3×10 ⁰²	1.0×10 ⁻²³	1.9×10 ⁻²³
950	1.6×10 ⁻²³	4.8×10 ⁻⁰¹	3.1×10 ⁻²³	2.0×10 ⁻²³	1.4	1.9×10 ⁰³	8.1×10 ⁰²	3.2×10 ⁻²³	6.4×10 ⁻²³
1000	1.7×10 ⁻²³	1.4	9.9×10 ⁻²³	2.1×10 ⁻²³	3.6	6.0×10 ⁰³	2.5×10 ⁰³	9.1×10 ⁻²³	1.9×10 ⁻²²
1050	1.9×10 ⁻²³	3.8	2.9×10 ⁻²²	2.3×10 ⁻²³	8.7	1.7×10 ⁰⁴	7.0×10 ⁰³	2.3×10 ⁻²²	5.2×10 ⁻²²
1100	2.0×10 ⁻²³	9.4	7.6×10 ⁻²²	2.5×10 ⁻²³	1.9×10 ⁰¹	4.3×10 ⁰⁴	1.8×10 ⁰⁴	5.5×10 ⁻²²	1.3×10 ⁻²¹
1150	2.2×10 ⁻²³	2.1×10 ⁰¹	1.8×10 ⁻²¹	2.7×10 ⁻²³	4.0×10 ⁰¹	1.0×10 ⁰⁵	4.2×10 ⁰⁴	1.2×10 ⁻²¹	3.1×10 ⁻²¹
1200	2.3×10 ⁻²³	4.5×10 ⁰¹	4.2×10 ⁻²¹	2.9×10 ⁻²³	7.7×10 ⁰¹	2.2×10 ⁰⁵	9.1×10 ⁰⁴	2.6×10 ⁻²¹	6.8×10 ⁻²¹
1250	2.5×10 ⁻²³	9.0×10 ⁰¹	9.0×10 ⁻²¹	3.1×10 ⁻²³	1.4×10 ⁰²	4.6×10 ⁰⁵	1.9×10 ⁰⁵	5.1×10 ⁻²¹	1.4×10 ⁻²⁰
1300	2.7×10 ⁻²³	1.7×10 ⁰²	1.8×10 ⁻²⁰	3.3×10 ⁻²³	2.5×10 ⁰²	9.0×10 ⁰⁵	3.7×10 ⁰⁵	9.6×10 ⁻²¹	2.8×10 ⁻²⁰
1350	2.9×10 ⁻²³	3.1×10 ⁰²	3.6×10 ⁻²⁰	3.5×10 ⁻²³	4.3×10 ⁰²	1.7×10 ⁰⁶	6.8×10 ⁰⁵	1.7×10^{-20}	5.3×10 ⁻²⁰

	1400	3.1×10 ⁻²³	5.4×10 ⁰²	6.7×10 ⁻²⁰	3.8×10 ⁻²³	6.9×10 ⁰²	3.0×10 ⁰⁶	1.2×10 ⁰⁶	3.1×10 ⁻²⁰	9.7×10 ⁻²⁰
ſ	1450	3.3×10 ⁻²³	9.0×10 ⁰²	1.2×10 ⁻¹⁹	4.1×10 ⁻²³	1.1×10 ⁰³	5.1×10 ⁰⁶	2.1×10 ⁰⁶	5.1×10 ⁻²⁰	1.7×10 ⁻¹⁹
ſ	1500	3.5×10 ⁻²³	1.5×10 ⁰³	2.1×10 ⁻¹⁹	4.3×10 ⁻²³	1.7×10 ⁰³	8.5×10 ⁰⁶	3.4×10 ⁰⁶	8.4×10 ⁻²⁰	2.9×10 ⁻¹⁹
ſ	1550	3.8×10 ⁻²³	2.3×10 ⁰³	3.5×10 ⁻¹⁹	4.6×10 ⁻²³	2.5×10 ⁰³	1.4×10 ⁰⁷	5.5×10 ⁰⁶	1.3×10 ⁻¹⁹	4.8×10 ⁻¹⁹
	1600	4.0×10 ⁻²³	3.5×10 ⁰³	5.6×10 ⁻¹⁹	4.9×10 ⁻²³	3.6×10 ⁰³	2.1×10 ⁰⁷	8.6×10 ⁰⁶	2.1×10 ⁻¹⁹	7.7×10 ⁻¹⁹
	1650	4.3×10 ⁻²³	5.2×10 ⁰³	9.0×10 ⁻¹⁹	5.3×10 ⁻²³	5.2×10 ⁰³	3.2×10 ⁰⁷	1.3×10 ⁰⁷	3.1×10 ⁻¹⁹	1.2×10 ⁻¹⁸
ſ	1700	4.6×10 ⁻²³	7.6×10 ⁰³	1.4×10 ⁻¹⁸	5.6×10 ⁻²³	7.2×10 ⁰³	4.8×10 ⁰⁷	1.9×10 ⁰⁷	4.7×10 ⁻¹⁹	1.9×10 ⁻¹⁸
ſ	1750	4.9×10 ⁻²³	1.1×10 ⁰⁴	2.1×10 ⁻¹⁸	6.0×10 ⁻²³	9.9×10 ⁰³	6.9×10 ⁰⁷	2.8×10 ⁰⁷	6.8×10 ⁻¹⁹	2.8×10 ⁻¹⁸
	1800	5.2×10 ⁻²³	1.5×10 ⁰⁴	3.1×10 ⁻¹⁸	6.3×10 ⁻²³	1.3×10 ⁰⁴	9.8×10 ⁰⁷	4.0×10 ⁰⁷	9.7×10 ⁻¹⁹	4.1×10 ⁻¹⁸
	1850	5.5×10 ⁻²³	2.1×10 ⁰⁴	4.5×10 ⁻¹⁸	6.7×10 ⁻²³	1.8×10 ⁰⁴	1.4×10 ⁰⁸	5.5×10 ⁰⁷	1.4×10^{-18}	5.9×10 ⁻¹⁸
	1900	5.8×10 ⁻²³	2.8×10 ⁰⁴	6.5×10 ⁻¹⁸	7.1×10 ⁻²³	2.3×10 ⁰⁴	1.9×10 ⁰⁸	7.6×10 ⁰⁷	1.9×10 ⁻¹⁸	8.4×10 ⁻¹⁸
	1950	6.1×10 ⁻²³	3.7×10 ⁰⁴	9.2×10 ⁻¹⁸	7.5×10 ⁻²³	2.9×10 ⁰⁴	2.5×10 ⁰⁸	1.0×10 ⁰⁸	2.6×10 ⁻¹⁸	1.2×10 ⁻¹⁷
	2000	6.5×10 ⁻²³	4.9×10 ⁰⁴	1.3×10 ⁻¹⁷	8.0×10 ⁻²³	3.7×10 ⁰⁴	3.3×10 ⁰⁸	1.4×10 ⁰⁸	3.5×10 ⁻¹⁸	1.6×10 ⁻¹⁷
	2050	6.9×10 ⁻²³	6.4×10 ⁰⁴	1.7×10 ⁻¹⁷	8.4×10 ⁻²³	4.7×10 ⁰⁴	4.4×10 ⁰⁸	1.8×10 ⁰⁸	4.6×10 ⁻¹⁸	2.2×10 ⁻¹⁷
	2100	7.2×10 ⁻²³	8.1×10 ⁰⁴	2.4×10 ⁻¹⁷	8.9×10 ⁻²³	5.8×10 ⁰⁴	5.7×10 ⁰⁸	2.3×10 ⁰⁸	6.0×10 ⁻¹⁸	3.0×10 ⁻¹⁷
	2150	7.6×10^{-23}	1.0×10 ⁰⁵	3.2×10 ⁻¹⁷	9.4×10 ⁻²³	7.2×10 ⁰⁴	7.2×10 ⁰⁸	3.0×10 ⁰⁸	7.8×10 ⁻¹⁸	3.9×10 ⁻¹⁷
	2200	8.1×10 ⁻²³	1.3×10°5	4.2×10 ⁻¹⁷	9.9×10 ⁻²³	8.8×10 ⁰⁴	9.2×10 ⁰⁸	3.7×10 ⁰⁸	1.0×10 ⁻¹⁷	5.2×10 ⁻¹⁷
	2250	8.5×10 ⁻²³	1.6×10 ⁰⁵	5.4×10 ⁻¹⁷	1.0×10 ⁻²²	1.1×10 ⁰⁵	1.1×10 ⁰⁹	4.7×10 ⁰⁸	1.3×10 ⁻¹⁷	6.7×10 ⁻¹⁷
	2300	8.9×10 ⁻²³	2.0×10 ⁰⁵	7.0×10 ⁻¹⁷	1.1×10 ⁻²²	1.3×10 ⁰⁵	1.4×10 ⁰⁹	5.8×10 ⁰⁸	1.6×10 ⁻¹⁷	8.6×10 ⁻¹⁷
	2350	9.4×10 ⁻²³	2.4×10 ⁰⁵	9.0×10 ⁻¹⁷	1.2×10 ⁻²²	1.5×10 ⁰⁵	1.7×10 ⁰⁹	7.1×10 ⁰⁸	2.0×10 ⁻¹⁷	1.1×10 ⁻¹⁶
	2400	9.9×10 ⁻²³	2.9×10 ⁰⁵	1.1×10 ⁻¹⁶	1.2×10 ⁻²²	1.8×10 ⁰⁵	2.1×10 ⁰⁹	8.7×10 ⁰⁸	2.5×10 ⁻¹⁷	1.4×10 ⁻¹⁶
	2450	1.0×10 ⁻²²	3.5×10°5	1.4×10 ⁻¹⁶	1.3×10 ⁻²²	2.1×10 ⁰⁵	2.6×10 ⁰⁹	1.1×10 ⁰⁹	3.1×10 ⁻¹⁷	1.7×10 ⁻¹⁶
	2500	1.1×10 ⁻²²	4.1×10 ⁰⁵	1.8×10 ⁻¹⁶	1.3×10 ⁻²²	2.4×10 ⁰⁵	3.1×10 ⁰⁹	1.3×10 ⁰⁹	3.8×10 ⁻¹⁷	2.2×10 ⁻¹⁶

		k_{CC}^{AC}				k_{CO}^{AC}			L AC
$I(\mathbf{K})$	kea	kuni	kf	kea	k ₁	k.1	k ₂	kf	κ _{tot}
213	4.3×10 ⁻²³	2.2×10 ⁻²⁰	5.8×10 ⁻⁴²	4.3×10 ⁻²³	9.3×10 ⁻¹⁴	7.2×10 ⁻¹⁹	2.6×10 ⁻¹⁴	2.4×10 ⁻³⁵	2.4×10 ⁻³⁵
216	4.1×10 ⁻²³	2.8×10 ⁻²⁰	6.9×10 ⁻⁴²	4.1×10 ⁻²³	1.2×10 ⁻¹³	1.2×10 ⁻¹⁸	2.9×10 ⁻¹⁴	2.9×10 ⁻³⁵	2.9×10 ⁻³⁵
219	3.8×10 ⁻²³	3.6×10 ⁻²⁰	8.2×10 ⁻⁴²	3.8×10 ⁻²³	1.6×10 ⁻¹³	2.1×10 ⁻¹⁸	3.3×10 ⁻¹⁴	3.6×10 ⁻³⁵	3.6×10 ⁻³⁵
224	3.5×10 ⁻²³	5.3×10 ⁻²⁰	1.1×10 ⁻⁴¹	3.5×10 ⁻²³	2.4×10 ⁻¹³	4.8×10 ⁻¹⁸	4.2×10 ⁻¹⁴	5.1×10 ⁻³⁵	5.1×10 ⁻³⁵
230	3.1×10 ⁻²³	8.5×10 ⁻²⁰	1.6×10 ⁻⁴¹	3.1×10 ⁻²³	4.1×10 ⁻¹³	1.3×10 ⁻¹⁷	5.7×10 ⁻¹⁴	7.7×10 ⁻³⁵	7.7×10 ⁻³⁵
235	2.9×10 ⁻²³	1.3×10 ⁻¹⁹	2.2×10 ⁻⁴¹	2.9×10 ⁻²³	6.4×10 ⁻¹³	3.0×10 ⁻¹⁷	7.3×10 ⁻¹⁴	1.1×10 ⁻³⁴	1.1×10 ⁻³⁴
250	2.3×10 ⁻²³	4.5×10 ⁻¹⁹	6.3×10 ⁻⁴¹	2.3×10 ⁻²³	2.5×10 ⁻¹²	3.4×10 ⁻¹⁶	1.7×10 ⁻¹³	3.4×10 ⁻³⁴	3.4×10^{-34}
259	2.1×10 ⁻²³	9.9×10 ⁻¹⁹	1.2×10 ⁻⁴⁰	2.1×10 ⁻²³	5.6×10 ⁻¹²	1.4×10 ⁻¹⁵	2.9×10 ⁻¹³	7.0×10 ⁻³⁴	7.0×10 ⁻³⁴
280	1.7×10 ⁻²³	6.7×10 ⁻¹⁸	6.7×10 ⁻⁴⁰	1.7×10 ⁻²³	4.0×10 ⁻¹¹	3.4×10^{-14}	1.2×10 ⁻¹²	3.9×10 ⁻³³	3.9×10 ⁻³³
290	1.5×10 ⁻²³	1.7×10 ⁻¹⁷	1.6×10 ⁻³⁹	1.5×10 ⁻²³	1.0×10 ⁻¹⁰	1.5×10 ⁻¹³	2.4×10 ⁻¹²	8.8×10 ⁻³³	8.8×10 ⁻³³
298	1.4×10 ⁻²³	3.8×10 ⁻¹⁷	3.2×10 ⁻³⁹	1.4×10 ⁻²³	2.2×10 ⁻¹⁰	4.7×10 ⁻¹³	4.3×10 ⁻¹²	1.7×10 ⁻³²	1.7×10 ⁻³²
300	1.4×10 ⁻²³	4.6×10 ⁻¹⁷	3.8×10 ⁻³⁹	1.4×10 ⁻²³	2.7×10 ⁻¹⁰	6.3×10 ⁻¹³	4.9×10 ⁻¹²	2.0×10 ⁻³²	2.0×10 ⁻³²
310	1.3×10 ⁻²³	1.2×10 ⁻¹⁶	9.6×10 ⁻³⁹	1.3×10 ⁻²³	6.9×10 ⁻¹⁰	2.6×10 ⁻¹²	1.1×10 ⁻¹¹	4.3×10 ⁻³²	4.3×10 ⁻³²
320	1.2×10 ⁻²³	3.4×10 ⁻¹⁶	2.5×10 ⁻³⁸	1.2×10 ⁻²³	1.8×10 ⁻⁹	1.0×10 ⁻¹¹	2.3×10 ⁻¹¹	8.9×10 ⁻³²	8.9×10 ⁻³²
200	5.8×10 ⁻²³	8.5×10 ⁻²¹	2.9×10 ⁻⁴²	5.8×10 ⁻²³	3.1×10 ⁻¹⁴	6.9×10 ⁻²⁰	1.5×10 ⁻¹⁴	1.1×10 ⁻³⁵	1.1×10 ⁻³⁵
250	2.3×10 ⁻²³	4.5×10 ⁻¹⁹	6.3×10 ⁻⁴¹	2.3×10 ⁻²³	2.5×10 ⁻¹²	3.4×10 ⁻¹⁶	1.7×10 ⁻¹³	3.4×10 ⁻³⁴	3.4×10 ⁻³⁴
300	1.4×10 ⁻²³	4.6×10 ⁻¹⁷	3.8×10 ⁻³⁹	1.4×10 ⁻²³	2.7×10 ⁻¹⁰	6.3×10 ⁻¹³	4.9×10 ⁻¹²	2.0×10 ⁻³²	2.0×10 ⁻³²
350	1.0×10 ⁻²³	8.0×10 ⁻¹⁵	5.0×10 ⁻³⁷	1.0×10 ⁻²³	2.8×10 ⁻⁸	5.4×10 ⁻¹⁰	2.9×10 ⁻¹⁰	6.0×10 ⁻³¹	6.0×10 ⁻³¹
400	8.6×10 ⁻²⁴	1.6×10 ⁻¹²	8.0×10 ⁻³⁵	8.6×10 ⁻²⁴	1.7×10^{-6}	1.7×10 ⁻⁷	2.5×10 ⁻⁸	1.2×10 ⁻²⁹	1.2×10 ⁻²⁹
450	7.8×10 ⁻²⁴	1.8×10 ⁻¹⁰	8.3×10 ⁻³³	7.8×10 ⁻²⁴	5.4×10 ⁻⁵	1.9×10 ⁻⁵	1.9×10 ⁻⁶	2.4×10 ⁻²⁸	2.4×10 ⁻²⁸
500	7.4×10 ⁻²⁴	9.9×10 ⁻⁹	4.4×10 ⁻³¹	7.4×10 ⁻²⁴	9.3×10 ⁻⁴	9.0×10 ⁻⁴	9.2×10 ⁻⁵	3.8×10 ⁻²⁷	3.8×10 ⁻²⁷
550	7.3×10 ⁻²⁴	2.9×10 ⁻⁷	1.3×10 ⁻²⁹	7.3×10 ⁻²⁴	9.8×10 ⁻³	2.3×10 ⁻²	2.5×10 ⁻³	4.4×10 ⁻²⁶	4.4×10 ⁻²⁶
600	7.4×10 ⁻²⁴	5.2×10 ⁻⁶	2.3×10 ⁻²⁸	7.4×10 ⁻²⁴	7.2×10 ⁻²	3.4×10 ⁻¹	4.4×10 ⁻²	3.6×10 ⁻²⁵	3.7×10 ⁻²⁵
650	7.7×10 ⁻²⁴	6.0×10 ⁻⁵	2.7×10 ⁻²⁷	7.7×10 ⁻²⁴	3.9×10 ⁻¹	3.4	5.1×10 ⁻¹	2.3×10 ⁻²⁴	2.3×10 ⁻²⁴
700	8.0×10 ⁻²⁴	4.9×10 ⁻⁴	2.3×10 ⁻²⁶	8.0×10 ⁻²⁴	1.7	25	4.2	1.2×10 ⁻²³	1.2×10 ⁻²³
750	8.4×10 ⁻²⁴	3.1×10 ⁻³	1.6×10 ⁻²⁵	8.4×10 ⁻²⁴	5.9	1.4×10 ²	27	4.8×10 ⁻²³	4.8×10 ⁻²³
800	8.9×10 ⁻²⁴	1.5×10 ⁻²	8.2×10 ⁻²⁵	8.9×10 ⁻²⁴	18	6.5×10 ²	1.4×10^{2}	1.7×10 ⁻²²	1.7×10 ⁻²²
850	9.4×10 ⁻²⁴	6.5×10 ⁻²	3.7×10 ⁻²⁴	9.4×10 ⁻²⁴	48	2.5×10 ³	5.9×10 ²	5.2×10 ⁻²²	5.2×10 ⁻²²
900	1.0×10 ⁻²³	2.3×10 ⁻¹	1.4×10 ⁻²³	1.0×10 ⁻²³	1.1×10 ²	8.3×10 ³	2.1×10 ³	1.4×10 ⁻²¹	1.4×10 ⁻²¹
950	1.1×10 ⁻²³	7.2×10 ⁻¹	4.6×10 ⁻²³	1.1×10 ⁻²³	2.5×10 ²	2.4×10^{4}	6.8×10 ³	3.6×10 ⁻²¹	3.6×10 ⁻²¹
1000	1.1×10 ⁻²³	2.0	1.4×10 ⁻²²	1.1×10 ⁻²³	5.1×10 ²	6.4×10^4	2.0×10 ⁴	8.2×10 ⁻²¹	8.3×10 ⁻²¹
1050	1.2×10 ⁻²³	5.2	3.8×10 ⁻²²	1.2×10 ⁻²³	9.7×10 ²	1.5×10 ⁵	5.1×10 ⁴	1.8×10 ⁻²⁰	1.8×10 ⁻²⁰
1100	1.3×10 ⁻²³	1.2×10 ¹	9.5×10 ⁻²²	1.3×10 ⁻²³	1.7×10^{3}	3.4×10^{5}	1.2×10^{5}	3.5×10 ⁻²⁰	3.6×10 ⁻²⁰
1150	1.4×10 ⁻²³	26	2.2×10 ⁻²¹	1.4×10 ⁻²³	3.0×10 ³	7.1×10 ⁵	2.7×10^{5}	6.8×10 ⁻²⁰	7.0×10 ⁻²⁰
1200	1.5×10 ⁻²³	54	4.8×10 ⁻²¹	1.5×10 ⁻²³	4.8×10 ³	1.4×10^{6}	5.5×10 ⁵	1.2×10 ⁻¹⁹	1.3×10 ⁻¹⁹
1250	1.6×10 ⁻²³	1.0×10 ²	1.0×10 ⁻²⁰	1.6×10 ⁻²³	7.6×10 ³	2.6×10^{6}	1.1×10^{6}	2.1×10 ⁻¹⁹	2.2×10 ⁻¹⁹
1300	1.7×10 ⁻²³	1.9×10 ²	2.0×10 ⁻²⁰	1.7×10 ⁻²³	1.2×10 ⁴	4.6×10^{6}	2.0×10^{6}	3.6×10 ⁻¹⁹	3.8×10 ⁻¹⁹
1350	1.8×10 ⁻²³	3.4×10 ²	3.7×10 ⁻²⁰	1.8×10 ⁻²³	1.7×10^{4}	7.8×10 ⁶	3.6×10^{6}	5.8×10 ⁻¹⁹	6.2×10 ⁻¹⁹
1400	2.0×10 ⁻²³	5.7×10 ²	6.7×10 ⁻²⁰	2.0×10 ⁻²³	2.4×10^{4}	1.3×10 ⁷	6.1×10 ⁶	9.2×10 ⁻¹⁹	9.9×10 ⁻¹⁹
1450	2.1×10 ⁻²³	9.3×10 ²	1.2×10 ⁻¹⁹	2.1×10 ⁻²³	3.4×10^{4}	2.0×10 ⁷	1.0×10 ⁷	1.4×10 ⁻¹⁸	1.5×10 ⁻¹⁸
1500	2.2×10 ⁻²³	1.5×10^{3}	2.0×10 ⁻¹⁹	2.2×10 ⁻²³	4.7×10^{4}	3.1×10 ⁷	1.6×10 ⁷	2.1×10 ⁻¹⁸	2.3×10 ⁻¹⁸
1550	2.4×10 ⁻²³	2.3×10 ³	3.2×10 ⁻¹⁹	2.4×10 ⁻²³	6.2×10 ⁴	4.7×10 ⁷	2.5×10 ⁷	3.1×10 ⁻¹⁸	3.4×10 ⁻¹⁸
1600	2.5×10 ⁻²³	3.4×10 ³	5.1×10 ⁻¹⁹	2.5×10 ⁻²³	8.2×10 ⁴	6.8×10 ⁷	3.8×10 ⁷	4.4×10 ⁻¹⁸	4.9×10 ⁻¹⁸
1650	2.7×10 ⁻²³	4.9×10 ³	7.9×10 ⁻¹⁹	2.7×10 ⁻²³	1.1×10 ⁵	9.8×10 ⁷	5.6×10 ⁷	6.2×10 ⁻¹⁸	7.0×10 ⁻¹⁸
1700	2.8×10 ⁻²³	7.0×10 ³	1.2×10 ⁻¹⁸	2.8×10 ⁻²³	1.4×10^{5}	1.4×10 ⁸	8.0×10 ⁷	8.6×10 ⁻¹⁸	9.8×10 ⁻¹⁸
1750	3.0×10 ⁻²³	9.8×10 ³	1.8×10 ⁻¹⁸	3.0×10 ⁻²³	1.7×10^{5}	1.9×10 ⁸	1.1×10 ⁸	1.2×10 ⁻¹⁷	1.3×10 ⁻¹⁷
1800	3.2×10 ⁻²³	1.4×10 ⁴	2.6×10 ⁻¹⁸	3.2×10 ⁻²³	2.1×10 ⁵	2.5×10 ⁸	1.6×10 ⁸	1.6×10 ⁻¹⁷	1.8×10 ⁻¹⁷
1850	3.4×10 ⁻²³	1.8×10 ⁴	3.7×10 ⁻¹⁸	3.4×10 ⁻²³	2.6×10 ⁵	3.4×10 ⁸	2.1×10 ⁸	2.1×10 ⁻¹⁷	2.4×10 ⁻¹⁷
1900	3.6×10 ⁻²³	2.4×10 ⁴	5.2×10 ⁻¹⁸	3.6×10 ⁻²³	3.2×10 ⁵	4.4×10 ⁸	2.9×10 ⁸	2.7×10 ⁻¹⁷	3.2×10 ⁻¹⁷
1950	3.8×10 ⁻²³	3.2×10 ⁴	7.2×10 ⁻¹⁸	3.8×10 ⁻²³	3.8×10 ⁵	5.7×10 ⁸	3.8×10 ⁸	3.5×10 ⁻¹⁷	4.2×10 ⁻¹⁷

Table S4: Rate constants (cm³ molecule⁻¹ s⁻¹) for ammonolysis of ketene at different temperatures within 200 to 2500 K using RRKM theory

2000	4.0×10 ⁻²³	4.1×10 ⁴	9.9×10 ⁻¹⁸	4.0×10 ⁻²³	4.6×10 ⁵	7.2×10 ⁸	4.9×10 ⁸	4.4×10 ⁻¹⁷	5.4×10 ⁻¹⁷
2050	4.2×10 ⁻²³	5.3×10 ⁴	1.3×10 ⁻¹⁷	4.2×10 ⁻²³	5.4×10^{5}	9.1×10 ⁸	6.3×10 ⁸	5.6×10 ⁻¹⁷	7.0×10 ⁻¹⁷
2100	4.4×10 ⁻²³	6.7×10^4	1.8×10 ⁻¹⁷	4.4×10 ⁻²³	6.4×10^{5}	1.1×10 ⁹	8.0×10 ⁸	7.0×10 ⁻¹⁷	8.8×10 ⁻¹⁷
2150	4.7×10 ⁻²³	8.4×10^4	2.3×10 ⁻¹⁷	4.7×10 ⁻²³	7.4×10^{5}	1.4×10^{9}	1.0×10^{9}	8.7×10 ⁻¹⁷	1.1×10 ⁻¹⁶
2200	4.9×10 ⁻²³	1.0×10^{5}	3.1×10 ⁻¹⁷	4.9×10 ⁻²³	8.6×10^{5}	1.7×10^{9}	1.3×10^{9}	1.1×10 ⁻¹⁶	1.4×10 ⁻¹⁶
2250	5.2×10 ⁻²³	1.3×10 ⁵	3.9×10 ⁻¹⁷	5.2×10 ⁻²³	9.9×10^{5}	2.1×10 ⁹	1.6×10^{9}	1.3×10 ⁻¹⁶	1.7×10 ⁻¹⁶
2300	5.4×10 ⁻²³	1.5×10 ⁵	5.0×10 ⁻¹⁷	5.4×10 ⁻²³	1.1×10^{6}	2.5×10^{9}	1.9×10^{9}	1.6×10 ⁻¹⁶	2.1×10 ⁻¹⁶
2350	5.7×10 ⁻²³	1.9×10 ⁵	6.4×10 ⁻¹⁷	5.7×10 ⁻²³	1.3×10^{6}	3.0×10 ⁹	2.3×10 ⁹	1.9×10 ⁻¹⁶	2.6×10 ⁻¹⁶
2400	6.0×10 ⁻²³	2.2×10 ⁵	8.0×10 ⁻¹⁷	6.0×10 ⁻²³	1.5×10^{6}	3.5×10^{9}	2.8×10 ⁹	2.3×10 ⁻¹⁶	3.1×10 ⁻¹⁶
2450	6.3×10 ⁻²³	2.7×10^{5}	1.0×10 ⁻¹⁶	6.3×10 ⁻²³	1.6×10^{6}	4.1×10 ⁹	3.3×10 ⁹	2.7×10 ⁻¹⁶	3.7×10 ⁻¹⁶
2500	6.6×10 ⁻²³	3.1×10 ⁵	1.2×10 ⁻¹⁶	6.6×10^{-23}	1.8×10^{6}	4.8×10^{9}	3.9×10 ⁹	3.2×10 ⁻¹⁶	4.5×10 ⁻¹⁶

Table S5: Rate constants (cm³ molecule⁻¹ s⁻¹) for the hydrolysis of KM at different temperatures 200 to 2500 K using RRKM theory

		k_{CC}^{AA}				k_{CO}^{AA}			k ^{AA}
	K _{eq}	K _{uni}	K _f	K _{eq}	\mathbf{k}_1	k-1	\mathbf{k}_2	\mathbf{k}_{f}	h _{tot}
213	4.1×10 ⁻²³	3.2×10 ⁻²²	5.3×10 ⁻⁴⁴	5.0×10 ⁻²³	2.7×10 ⁻²²	3.2×10 ⁻²³	4.0×10 ⁻¹⁵	5.3×10 ⁻⁴⁴	2.6×10 ⁻⁴³
216	3.9×10 ⁻²³	4.1×10 ⁻²²	6.5×10 ⁻⁴⁴	4.7×10 ⁻²³	3.9×10 ⁻²²	5.3×10 ⁻²³	4.5×10 ⁻¹⁵	7.4×10 ⁻⁴⁴	3.7×10 ⁻⁴³
219	3.7×10 ⁻²³	5.3×10 ⁻²²	7.9×10 ⁻⁴⁴	4.5×10 ⁻²³	5.7×10 ⁻²²	8.9×10 ⁻²³	5.1×10 ⁻¹⁵	1.0×10 ⁻⁴³	5.1×10 ⁻⁴³
224	3.4×10 ⁻²³	8.2×10 ⁻²²	1.1×10 ⁻⁴³	4.1×10 ⁻²³	1.1×10 ⁻²¹	2.1×10 ⁻²²	6.2×10 ⁻¹⁵	1.8×10 ⁻⁴³	9.1×10 ⁻⁴³
230	3.1×10 ⁻²³	1.4×10 ⁻²¹	1.8×10 ⁻⁴³	3.8×10 ⁻²³	2.4×10 ⁻²¹	5.9×10 ⁻²²	8.0×10 ⁻¹⁵	3.6×10 ⁻⁴³	1.8×10 ⁻⁴²
235	2.9×10 ⁻²³	2.2×10 ⁻²¹	2.6×10 ⁻⁴³	3.5×10 ⁻²³	4.6×10 ⁻²¹	1.4×10 ⁻²¹	1.0×10 ⁻¹⁴	6.5×10 ⁻⁴³	3.2×10 ⁻⁴²
250	2.4×10 ⁻²³	9.1×10 ⁻²¹	8.8×10 ⁻⁴³	2.9×10 ⁻²³	3.3×10 ⁻²⁰	1.8×10 ⁻²⁰	2.1×10 ⁻¹⁴	3.9×10 ⁻⁴²	2.0×10 ⁻⁴¹
259	2.2×10 ⁻²³	2.2×10 ⁻²⁰	1.9×10 ⁻⁴²	2.7×10 ⁻²³	1.1×10 ⁻¹⁹	8.0×10 ⁻²⁰	3.3×10 ⁻¹⁴	1.2×10 ⁻⁴¹	5.9×10^{-41}
280	1.8×10 ⁻²³	1.9×10 ⁻¹⁹	1.4×10 ⁻⁴¹	2.2×10 ⁻²³	2.0×10 ⁻¹⁸	2.7×10 ⁻¹⁸	1.1×10 ⁻¹³	1.7×10 ⁻⁴⁰	8.6×10 ⁻⁴⁰
290	1.7×10 ⁻²³	5.5×10 ⁻¹⁹	3.7×10 ⁻⁴¹	2.0×10 ⁻²³	7.8×10 ⁻¹⁸	1.4×10 ⁻¹⁷	2.1×10 ⁻¹³	6.3×10 ⁻⁴⁰	3.1×10 ⁻³⁹
298	1.6×10 ⁻²³	1.3×10 ⁻¹⁸	8.5×10 ⁻⁴¹	1.9×10 ⁻²³	2.3×10 ⁻¹⁷	5.4×10 ⁻¹⁷	3.5×10 ⁻¹³	1.8×10 ⁻³⁹	9.0×10 ⁻³⁹
300	1.6×10 ⁻²³	1.7×10 ⁻¹⁸	1.0×10 ⁻⁴⁰	1.9×10 ⁻²³	3.1×10 ⁻¹⁷	7.4×10 ⁻¹⁷	4.0×10 ⁻¹³	2.3×10 ⁻³⁹	1.2×10 ⁻³⁸
310	1.5×10 ⁻²³	5.2×10 ⁻¹⁸	3.0×10 ⁻⁴⁰	1.8×10 ⁻²³	1.2×10 ⁻¹⁶	3.8×10 ⁻¹⁶	7.9×10 ⁻¹³	8.7×10 ⁻³⁹	4.4×10 ⁻³⁸
320	1.4×10 ⁻²³	1.6×10 ⁻¹⁷	9.2×10 ⁻⁴⁰	1.7×10 ⁻²³	4.8×10 ⁻¹⁶	1.9×10 ⁻¹⁵	1.6×10 ⁻¹²	3.2×10 ⁻³⁸	1.6×10 ⁻³⁷
200	5.4×10 ⁻²³	1.1×10 ⁻²²	2.4×10 ⁻⁴⁴	6.4×10 ⁻²³	5.1×10 ⁻²³	3.3×10 ⁻²⁴	2.6×10 ⁻¹⁵	1.3×10 ⁻⁴⁴	6.6×10 ⁻⁴⁴
250	2.4×10 ⁻²³	9.1×10 ⁻²¹	8.8×10 ⁻⁴³	2.9×10 ⁻²³	3.3×10 ⁻²⁰	1.8×10 ⁻²⁰	2.1×10 ⁻¹⁴	3.9×10 ⁻⁴²	2.0×10 ⁻⁴¹
300	1.6×10 ⁻²³	1.7×10 ⁻¹⁸	1.0×10 ⁻⁴⁰	1.9×10 ⁻²³	3.1×10 ⁻¹⁷	7.4×10 ⁻¹⁷	4.0×10 ⁻¹³	2.3×10 ⁻³⁹	1.2×10 ⁻³⁸
350	1.2×10 ⁻²³	5.8×10 ⁻¹⁶	2.8×10 ⁻³⁸	1.5×10 ⁻²³	2.5×10 ⁻¹⁴	2.0×10 ⁻¹³	1.5×10 ⁻¹¹	1.5×10 ⁻³⁶	7.4×10 ⁻³⁶
400	1.1×10 ⁻²³	2.0×10 ⁻¹³	8.4×10 ⁻³⁶	1.3×10 ⁻²³	8.6×10 ⁻¹²	1.7×10 ⁻¹⁰	9.1×10 ⁻¹⁰	3.8×10 ⁻³⁴	1.9×10 ⁻³³
450	1.0×10 ⁻²³	3.3×10 ⁻¹¹	1.3×10 ⁻³³	1.2×10 ⁻²³	1.0×10 ⁻⁹	4.3×10 ⁻⁸	6.4×10 ⁻⁸	3.0×10 ⁻³²	1.5×10 ⁻³¹
500	9.9×10 ⁻²⁴	2.4×10 ⁻⁹	9.6×10 ⁻³²	1.2×10 ⁻²³	5.2×10 ⁻⁸	4.0×10 ⁻⁶	3.4×10 ⁻⁶	1.1×10 ⁻³⁰	5.7×10 ⁻³⁰
550	1.0×10 ⁻²³	8.8×10 ⁻⁸	3.5×10 ⁻³⁰	1.2×10 ⁻²³	1.3×10 ⁻⁶	1.8×10 ⁻⁴	1.1×10 ⁻⁴	2.5×10 ⁻²⁹	1.3×10 ⁻²⁸
600	1.0×10 ⁻²³	1.8×10 ⁻⁶	7.6×10 ⁻²⁹	1.3×10 ⁻²³	2.1×10 ⁻⁵	4.2×10 ⁻³	2.3×10 ⁻³	3.6×10 ⁻²⁸	1.8×10 ⁻²⁷
650	1.1×10 ⁻²³	2.4×10 ⁻⁵	1.1×10 ⁻²⁷	1.3×10 ⁻²³	2.1×10 ⁻⁴	6.3×10 ⁻²	3.1×10 ⁻²	3.6×10 ⁻²⁷	1.8×10 ⁻²⁶
700	1.1×10 ⁻²³	2.3×10 ⁻⁴	1.0×10 ⁻²⁶	1.4×10 ⁻²³	1.5×10 ⁻³	6.5×10 ⁻¹	3.0×10 ⁻¹	2.7×10 ⁻²⁶	1.4×10 ⁻²⁵
750	1.2×10 ⁻²³	1.6×10 ⁻³	7.7×10 ⁻²⁶	1.5×10 ⁻²³	8.6×10 ⁻³	4.9	2.2	1.6×10 ⁻²⁵	7.9×10 ⁻²⁵
800	1.3×10 ⁻²³	8.7×10 ⁻³	4.5×10 ⁻²⁵	1.6×10 ⁻²³	3.9×10 ⁻²	29	13	7.6×10 ⁻²⁵	3.8×10 ⁻²⁴
850	1.4×10 ⁻²³	3.9×10 ⁻²	2.2×10 ⁻²⁴	1.7×10 ⁻²³	1.5×10 ⁻¹	1.4×10 ²	60	3.1×10 ⁻²⁴	1.5×10 ⁻²³
900	1.5×10 ⁻²³	1.5×10 ⁻¹	9.0×10 ⁻²⁴	1.8×10 ⁻²³	4.9×10 ⁻¹	5.7×10 ²	2.4×10 ²	1.1×10 ⁻²³	5.4×10 ⁻²³
950	1.6×10 ⁻²³	5.0×10 ⁻¹	3.2×10 ⁻²³	2.0×10 ⁻²³	1.4	2.0×10 ³	8.4×10 ²	3.4×10 ⁻²³	1.7×10 ⁻²²
1000	1.7×10 ⁻²³	1.5	1.0×10 ⁻²²	2.1×10 ⁻²³	3.8	6.2×10 ³	2.6×10 ³	9.4×10 ⁻²³	4.7×10 ⁻²²
1050	1.9×10 ⁻²³	4.0	3.0×10 ⁻²²	2.3×10 ⁻²³	9.0	1.7×10^{4}	7.2×10 ³	2.4×10 ⁻²²	1.2×10 ⁻²¹
1100	2.0×10 ⁻²³	9.7	7.8×10 ⁻²²	2.5×10 ⁻²³	20	4.5×10^{4}	1.8×10 ⁴	5.7×10 ⁻²²	2.9×10 ⁻²¹
1150	2.2×10 ⁻²³	22	1.9×10 ⁻²¹	2.7×10 ⁻²³	41	1.1×10^{5}	4.3×10^{4}	1.3×10 ⁻²¹	6.4×10 ⁻²¹

1200	2.3×10 ⁻²³	47	4.3×10 ⁻²¹	2.9×10 ⁻²³	80	2.3×10 ⁵	9.5×10 ⁴	2.7×10 ⁻²¹	1.3×10 ⁻²⁰
1250	2.5×10 ⁻²³	93	9.4×10 ⁻²¹	3.1×10 ⁻²³	1.5×10 ²	4.8×10 ⁵	1.9×10^{5}	5.3×10 ⁻²¹	2.6×10 ⁻²⁰
1300	2.7×10 ⁻²³	1.8×10 ²	1.9×10 ⁻²⁰	3.3×10 ⁻²³	2.6×10 ²	9.3×10 ⁵	3.8×10^{5}	1.0×10 ⁻²⁰	5.0×10 ⁻²⁰
1350	2.9×10 ⁻²³	3.2×10 ²	3.7×10 ⁻²⁰	3.5×10 ⁻²³	4.4×10 ²	1.7×10^{6}	7.1×10^{5}	1.8×10 ⁻²⁰	9.1×10 ⁻²⁰
1400	3.1×10 ⁻²³	5.6×10 ²	6.9×10 ⁻²⁰	3.8×10 ⁻²³	7.2×10 ²	3.1×10^{6}	1.3×10^{6}	3.2×10 ⁻²⁰	1.6×10 ⁻¹⁹
1450	3.3×10 ⁻²³	9.4×10 ²	1.2×10 ⁻¹⁹	4.1×10 ⁻²³	1.1×10 ³	5.3×10^{6}	2.2×10^{6}	5.3×10 ⁻²⁰	2.7×10 ⁻¹⁹
1500	3.5×10 ⁻²³	1.5×10^{3}	2.1×10 ⁻¹⁹	4.3×10 ⁻²³	1.7×10^{3}	8.8×10^{6}	3.6×10^{6}	8.7×10 ⁻²⁰	4.4×10 ⁻¹⁹
1550	3.8×10 ⁻²³	2.4×10^{3}	3.6×10 ⁻¹⁹	4.6×10 ⁻²³	2.6×10 ³	1.4×10^{7}	5.7×10^{6}	1.4×10 ⁻¹⁹	7.0×10 ⁻¹⁹
1600	4.0×10 ⁻²³	3.6×10^{3}	5.8×10 ⁻¹⁹	4.9×10 ⁻²³	3.8×10 ³	2.2×10^{7}	8.9×10^{6}	2.2×10 ⁻¹⁹	1.1×10^{-18}
1650	4.3×10 ⁻²³	5.4×10 ³	9.3×10 ⁻¹⁹	5.3×10 ⁻²³	5.4×10 ³	3.3×10 ⁷	1.4×10^{7}	3.3×10 ⁻¹⁹	1.6×10^{-18}
1700	4.6×10 ⁻²³	7.9×10 ³	1.4×10 ⁻¹⁸	5.6×10 ⁻²³	7.5×10 ³	4.9×10^{7}	2.0×10^{7}	4.8×10 ⁻¹⁹	2.4×10 ⁻¹⁸
1750	4.9×10 ⁻²³	1.1×10^{4}	2.2×10 ⁻¹⁸	6.0×10 ⁻²³	1.0×10^{4}	7.2×10^{7}	2.9×10^{7}	7.1×10 ⁻¹⁹	3.5×10 ⁻¹⁸
1800	5.2×10 ⁻²³	1.6×10^{4}	3.2×10 ⁻¹⁸	6.3×10 ⁻²³	1.4×10^{4}	1.0×10 ⁸	4.1×10^{7}	1.0×10 ⁻¹⁸	5.0×10 ⁻¹⁸
1850	5.5×10 ⁻²³	2.2×10^{4}	4.7×10 ⁻¹⁸	6.7×10 ⁻²³	1.8×10^{4}	1.4×10^{8}	5.8×10^{7}	1.4×10 ⁻¹⁸	7.1×10 ⁻¹⁸
1900	5.8×10 ⁻²³	2.9×10^{4}	6.7×10 ⁻¹⁸	7.1×10 ⁻²³	2.4×10 ⁴	1.9×10 ⁸	7.9×10^{7}	2.0×10 ⁻¹⁸	9.8×10 ⁻¹⁸
1950	6.1×10 ⁻²³	3.9×10^{4}	9.5×10 ⁻¹⁸	7.5×10 ⁻²³	3.1×10^{4}	2.6×10 ⁸	1.1×10^{8}	2.7×10 ⁻¹⁸	1.3×10 ⁻¹⁷
2000	6.5×10 ⁻²³	5.1×10^{4}	1.3×10 ⁻¹⁷	8.0×10 ⁻²³	3.9×10^{4}	3.5×10^{8}	1.4×10^{8}	3.6×10 ⁻¹⁸	1.8×10 ⁻¹⁷
2050	6.9×10 ⁻²³	6.6×10^4	1.8×10 ⁻¹⁷	8.4×10 ⁻²³	4.9×10^{4}	4.5×10^{8}	1.9×10^{8}	4.8×10 ⁻¹⁸	2.4×10 ⁻¹⁷
2100	7.2×10 ⁻²³	8.4×10^{4}	2.4×10 ⁻¹⁷	8.9×10 ⁻²³	6.1×10^4	5.9×10 ⁸	2.4×10^{8}	6.3×10 ⁻¹⁸	3.1×10 ⁻¹⁷
2150	7.6×10 ⁻²³	1.1×10^{5}	3.3×10 ⁻¹⁷	9.4×10 ⁻²³	7.5×10^{4}	7.5×10 ⁸	3.1×10^{8}	8.1×10 ⁻¹⁸	4.1×10 ⁻¹⁷
2200	8.1×10 ⁻²³	1.3×10^{5}	4.3×10 ⁻¹⁷	9.9×10 ⁻²³	9.1×10 ⁴	9.5×10 ⁸	3.9×10^{8}	1.0×10 ⁻¹⁷	5.2×10 ⁻¹⁷
2250	8.5×10 ⁻²³	1.7×10^{5}	5.6×10 ⁻¹⁷	1.0×10 ⁻²²	1.1×10^{5}	1.2×10 ⁹	4.9×10^{8}	1.3×10 ⁻¹⁷	6.7×10 ⁻¹⁷
2300	8.9×10 ⁻²³	2.0×10 ⁵	7.3×10 ⁻¹⁷	1.1×10 ⁻²²	1.3×10^{5}	1.5×10^{9}	6.0×10^{8}	1.7×10 ⁻¹⁷	8.4×10 ⁻¹⁷
2350	9.4×10 ⁻²³	2.5×10 ⁵	9.3×10 ⁻¹⁷	1.2×10 ⁻²²	1.6×10^{5}	1.8×10 ⁹	7.4×10 ⁸	2.1×10 ⁻¹⁷	1.1×10 ⁻¹⁶
2400	9.9×10 ⁻²³	3.0×10 ⁵	1.2×10 ⁻¹⁶	1.2×10 ⁻²²	1.9×10 ⁵	2.2×10 ⁹	9.0×10 ⁸	2.6×10 ⁻¹⁷	1.3×10 ⁻¹⁶
2450	1.0×10 ⁻²²	3.6×10 ⁵	1.5×10 ⁻¹⁶	1.3×10 ⁻²²	2.2×10 ⁵	2.7×10 ⁹	1.1×10 ⁹	3.2×10 ⁻¹⁷	1.6×10^{-16}
2500	1.1×10 ⁻²²	4.3×10 ⁵	1.9×10 ⁻¹⁶	1.3×10 ⁻²²	2.5×10^{5}	3.2×10 ⁹	1.3×10 ⁹	4.0×10 ⁻¹⁷	2.0×10 ⁻¹⁶

Table S6: Concentrations of WM and AM (molecules cm⁻³) at various altitudes in troposphere

Altitude (km)	T (K)	[WM] ^a	[AM] ^b
0	298	5.2×10^{17}	2.5 × 10 ¹¹
5	259	2.4× 10 ¹⁶	7.6× 10 ⁹
10	230	4.9×10^{15}	8.5× 10 ⁸
15	213	2.0×10^{13}	1.2× 10 ⁸

^a – References 7, ^b - Reference 8-10

Table S7: Concentrations of AM and WM (molecules cm^{-3}) within 280K to 320K at 0 km altitude

Reactants		280 K	290 K	298 K	300 K	310 K	320 K
AMª	0.1 ppbv	2.6×10 ⁹	2.5×10 ⁹	2.5×10 ⁹	2.4×10 ⁹	2.4×10 ⁹	2.3×10 ⁹
	10 ppbv	2.6×10 ¹¹	2.5×10 ¹¹	2.5×10 ¹¹	2.4×10 ¹¹	2.4×10 ¹¹	2.3×10 ¹¹
	2900 ppbv	7.6×10 ¹³	7.3×10 ¹³	7.1×10 ¹³	7.1×10 ¹³	6.9×10 ¹³	6.7×10 ¹³
WM ^b	20% RH	5.2×10 ¹⁶	9.6×10 ¹⁶	1.5×10 ¹⁷	1.7×10 ¹⁷	2.9×10 ¹⁷	4.1×10 ¹⁷
	100% RH	2.6×10 ¹⁷	4.8×10 ¹⁷	7.7×10 ¹⁷	8.6×10 ¹⁷	1.5×10 ¹⁸	2.3×10 ¹⁸

^a – References 11-14, ^b - Reference 7

Table S8: Absolute energies (Hartree) of all the species involved in hydrolysis andammonolysis of ketene calculated at the two different levels of theory

species	MP2/aug-cc-pVTZ	CCSD(T)/CBS
KM	-152.334603	-152.432031467
AM	-56.4605408	-56.5070882913
WM	-76.3289923	-76.3759356964
AMRC	-208.8004392	-208.9443872707
^{₩M} RC	-228.6682806	-228.8127696799
^{AM} TS _{CC}	-208.7354563	-208.8766636847
AMTS-1 _{CO}	-208.7551032	-208.8975402061
AMTS-2 _{CO}	-208.7497369	-208.8917433762
^{₩M} TS _{CC}	-228.6019314	-228.7414263585
^{WM} TS-1 _{CO}	-228.6065993	-228.7499202387
^{WM} TS-2 _{CO}	-228.6055461	-228.749164927
$^{AM}IM_{CO}$	-208.8156465	-208.9612304395
^{WM} IM _{CO}	-228.67674	-228.8239273689
AC	-208.8543744	-208.9984866861
AA	-228.7226153	-228.8682688663

Table S9: Relative ZPE corrected energies (kcal mol⁻¹) of all species with respect to the isolated reactants calculated using two different levels of theory

species	MP2/aug-cc-pVTZ	CCSD(T)/CBS//MP2/aug-cc-pVTZ
AMRC	-2.2	-2.2
AMTS _{CC}	38.5	40.3
AMTS-1 _{CO}	27.3	28.3
AMIM _{CO}	-8.0	-9.0
AMTS-2 _{CO}	30.1	31.3
AC	-32.4	-32.4
WMRC	-1.9	-2.0
WMTS _{CC}	39.3	42.3
^{WM} TS-1 _{CO}	37.5	38.2
^{WM} IM _{CO}	-2.9	-4.7
^{WM} TS-2 _{CO}	38.6	39.1
AA	-31.2	-32.0

Table S10: Optimized geometries in Cartesian coordinates and normal mode frequencies of all species calculated at MP2/aug-cc-pVTZ level of theory

species	Cartesian coordinates (Å)	Vibrational frequencies (cm ⁻¹)		
ketene	C0.00022000-1.215459000.0000000H-0.94094800-1.737556000.00000000H0.94156500-1.737237000.00000000C0.000000000.101691000.00000000O-0.000242001.269675000.00000000	433.8184 502.3029 584.0250 984.8421 1152.7747 1409.3953 2200.8952 3227.4056 3336.6530		
WM	H0.00000000.75816200-0.47292300H0.00000000-0.75816200-0.47292300O0.000000000.000000000.11823100	1628.4005 3821.6010 3947.4441		
AM	N-0.00000100-0.00002200-0.11390700H0.74017500-0.576210000.26588800H-0.86914800-0.352817000.26584700H0.128980000.929184000.26561700	1036.0525 1668.6736 1668.6867 3504.4346 3651.5437 3651.5633		
AMRC	C-1.23365000-1.10910100-0.00002600H2.87404500-0.776586000.00002100H-0.42172700-1.81512700-0.00009200H-2.27047500-1.398467000.00008700C-0.928720000.171528000.00002700O-0.681253001.31497500-0.00001200H2.057534000.37117300-0.81067700H2.057332000.370948000.81083100N2.01821900-0.23518600-0.00001200	42.134981.9897110.8245122.4639189.5055267.3244416.6457515.4062587.7334979.94491071.32181147.48871396.66621666.56121667.33672195.31583226.33983342.88083494.23503636.91583641.0420		
^{AM} TS _{CC}	C-0.14862700-1.35687300-0.05936200H1.08474900-0.69978800-0.54572100H0.54400600-1.797266000.65536500H-1.02153300-1.95709800-0.27932600C-0.305110000.050729000.08403700O-1.178628000.876838000.01473700H1.313829001.23333900-0.70087700H1.662453000.728020000.84561400N1.223992000.47356400-0.03442900	-1807.9932239.0503444.0250481.3171598.1195636.9249770.6675836.4894919.9190961.06591084.74001156.23771412.09231507.16211546.75411795.24681896.32343132.58283244.31823492.05453614.1375		
^{AM} TS-1 _{CO}	C1.47109200-0.292441000.00000500H2.265693000.435171000.00000100H1.70322800-1.344192000.00001400C0.195147000.122972000.00000000O-0.436780001.26101600-0.00001100N-0.98469500-0.816357000.00000500H-1.07548900-1.383424000.83673500H-1.07548800-1.38343100-0.83672100H-1.428278000.31905900-0.0000200	-1636.6012303.6369415.2731517.3461666.8993716.8323735.8586839.06911006.29281027.42261073.73481238.99001423.29861448.84721572.41221739.91012167.32673216.23043321.55723499.96003614.2656		
^{AM} IM _{CO}	C1.18842400-0.768328000.01632000H1.14328300-1.844592000.03647100H2.15229100-0.28607700-0.01850300C0.05971100-0.04276000-0.00534900N-1.23182600-0.53597800-0.09039300H-1.31281800-1.508511000.15909400H-1.906264000.041496000.38914900O0.016905001.32140600-0.00749200H0.922240001.644811000.06064500	215.0596406.7756454.0106510.8703582.5578678.8568690.2921722.7826937.0665980.09631128.60891221.64711427.25381459.88791640.36081738.54373210.56943310.37993580.74053699.10683833.3232		

^{AM} TS-2 _{CO}	C-1.15476300-0.77036800-0.05289100H-1.14601900-1.75598200-0.50317100H-1.72352300-0.704778000.87059100C0.045747000.000918000.02034700N1.32172900-0.385925000.01380700H1.56012100-1.347605000.16534300H2.051069000.29244900-0.12211200O-0.252435001.265664000.00054100H-1.320178000.70877100-0.31636200	-1963.3858320.1188429.9222454.4298537.8429630.9868737.3834801.5870998.79961055.31211092.01041172.58671425.44101521.72051534.66001656.82292006.71193141.49933231.16993621.43573767.7426
AC	C1.35939400-0.32842000-0.00026200H1.74349600-0.247140001.01586300H1.46796000-1.35741900-0.33622100H1.945267000.32986900-0.63501900C-0.074185000.14599400-0.00825800O-0.375128001.330561000.00268800N-1.01660500-0.84142800-0.01856200H-0.76821200-1.810098000.04938500H-1.98250700-0.575152000.06553900	34.6511147.1806427.8200521.8600548.2395659.7296861.3770989.52671060.71121120.45941353.44861413.31251492.46971511.12501624.18531766.66703086.95333174.60653199.27973619.12533769.3819
^{wM} RC	C-1.27059700-1.064653000.00347400H-2.32015200-1.302135000.02055700H-0.49917400-1.81494800-0.01923600C-0.898952000.196926000.00271600O-0.576025001.321470000.00248600H2.85000900-0.533228000.23011800H1.935028000.663164000.02239500O1.95747300-0.29728200-0.03885700	60.319576.5312108.9435129.1487188.5643200.1132425.8039510.5781583.6677981.02811150.78421400.29081628.93782198.51873226.73513340.96993810.87683936.0904
^{wm} TS _{cc}	C-0.189630001.31421800-0.04004900H-1.176143000.42441500-0.43973700H-0.771256001.572391000.83932900H0.439275002.11243500-0.41742700C0.445192000.061442000.08105700O1.38013800-0.630503000.00409400O-1.18331400-0.79015100-0.12343000H-1.59983500-0.997971000.72646800	-1751.2021 284.0457 372.7855 461.5842 523.7154 592.9883 715.5263 763.8899 855.9813 1054.7144 1088.8611 1405.8109 1500.3168 1797.7336 2056.3765 3145.9452 3237.1562 3774.0255
^{wm} TS-1 _{co}	C-1.48346100-0.203595000.00369400C-0.207005000.18045000-0.01209900O0.565002001.189939000.01728100O0.90885200-0.92679300-0.10111700H1.403481000.11874200-0.00988700H0.93643400-1.401054000.74608300H-2.242080000.557872000.07287100H-1.74586800-1.24185100-0.08794700	-1595.1115 396.9129 440.7998 580.5096 631.1252 635.4145 695.7761 771.6382 995.5898 1019.0154 1181.1846 1355.2955 1443.7642 1833.5129 2144.3980 3228.8073 3340.7273 3747.3873
^{WM} IM _{CO}	C-1.386360000.00000000-0.00000100H-1.933274000.928309000.00000500H-1.93327400-0.928309000.00000000C-0.046023000.00000000-0.00000100H0.191874001.868964000.00000800O0.75481900-1.086512000.00000100H0.191874001.868964000.00000100O0.754819001.08651200-0.00001100	255.6345436.2394466.2777548.6214667.5895671.8797705.5638950.0747984.85271169.59501245.84561455.54291461.96191730.77683215.17833314.54963835.06783836.8780
^{WM} TS-2 _{CO}	C-1.23481200-0.61143200-0.04745000H-1.36673200-1.61311100-0.42983400H-1.85676700-0.346577000.80143500C0.04721300-0.028861000.03212100	-2096.3979 429.4593 507.8192 569.9283 623.2398 742.1049 788.5172 999.3891 1062.2396 1145.8141 1212.3591 1424.9629

	H O H O	1.89999500 -0.01355100 -1.15600900 1.21418900	0.02206000 1.26216600 0.85745600 -0.64692500	-0.11645800 -0.00865200 -0.36890300 0.03436900	1518.8338 3162.4510	1602.2227 3264.6164	1982.1075 3751.9438
AA	С	-1.38957600	-0.10898800	-0.00018800			
	Н	-1.66420100	-0.69050100	-0.87800200	78.2029	422.8000	549.6503
	Η	-1.66565700	-0.68813300	0.87873700	583.3796	662.0860	874.2742
	Η	-1.90758400	0.84292000	-0.00185000	1008.4613	1076.2691	1206.3355
	С	0.08920600	0.12609300	0.00098700	1342.5950	1422.4304	1492.5434
	0	0.64337500	1.20177500	-0.00025600	1501.0882	1810.5101	3097.5105
	Η	1.71170600	-0.80459300	-0.00057600	3181.2393	3223.7003	3752.1871
	0	0.77262000	-1.04706500	-0.00013300			

References:

- Nguyen, T. L., Xue, B. C., Ellison, G. B., & Stanton, J. F. (2013). Theoretical study of reaction of ketene with water in the gas phase: formation of acetic acid?. *J. Phys. Chem. A* 2013, 117, 10997–11005.
- 2. Nguyen, M. T., & Raspoet, G. (1999). The hydration mechanism of ketene: 15 years later. *Canadian journal of chemistry*, *77*(5-6), 817-829.
- 3. Cannizzaro, C. E.; Houk, K. N. Theoretical Study of the Stereoselective Additions of Chiral Alcohols to Ketene. J. Am. Chem. Soc. 2004, 126, 10992–11008.
- **4.** Raspoet, G.; Nguyen, M. T.; Kelly, S.; Hegarty, A. F. Amination of ketenes: Evidence for a mechanism involving enols of amides as intermediates. The Journal of Organic Chemistry 1998, 63, 9669–9677.
- 5. Sung, K.; Tidwell, T. T. Amination of ketene: A theoretical study. Journal of the American Chemical Society 1998, 120, 3043–3048.
- **6.** Kim, C. K., Lee, K. A., Chen, J., Lee, H. W., Lee, B. S., & Kim, C. K. (2008). Theoretical Studies on the Addition Reactions of Ketene with NH₃ in the Gas Phase and in Non-Aqueous Solutions. *Bulletin of the Korean Chemical Society*, *29*(7), 1335-1343.
- 7. J. M. Anglada, G. J. Hoffman, L. V. Slipchenko, M. M. Costa, M. F. Ruiz-López and J. S. Francisco, *J. Phys. Chem. A.*, 2013, 117, 10381.
- Nowak, J. B.; Neuman, J. A.; Bahreini, R.; Brock, C. A.; Middlebrook, A. M.; Wollny, A. G.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Fehsenfeld, F. C. J. Geophys. Res., 2010, 115.
- **9.** Oelhaf, H.; Leupolt, A.; Fischer, H. *Appl. Opt.*, 1983, 22, 647.
- **10.** Höpfner, M.; Volkamer, R.; Grabowski, U.; Orphal, M. G. J.; Stiller, G.; von Clarmann, T.; Wetzel, G. *Atmos. Chem. Phys. Discuss.*, 2016, 16, 14357.
- 11. Atmospheric Chemistry and Global Change, ed. Brasseur, G. P.; Orlando, J. J.; Tyndall, G. S. Oxford University Press, 1999.
- **12.** Aneja, V. P.; Nelson, D. R.; Roelle, P. A.; Walker, J. T.; Battye, W. Agricultural ammonia emissions and ammonium concentrations associated with aerosols and precipitation in the southeast United States. *J. Geophys. Res.* 2003, 108.
- **13.** Warner, J.; Wei, Z.; Strow, L.; Dickerson, R.; Nowak, J. The global tropospheric ammonia distribution as seen in the 13 year AIRS measurement record. *Atmos. Chem. Phys Discuss.* 2015, 15.
- **14.** Hiranuma, N.; Brooks, S. D.; Thornton, D. C.; Auvermann, B. W. Atmospheric ammonia mixing ratios at an open-air cattle feeding facility. *J. Air Waste Manage. Assoc.* 2010, 60, 210–218.