Effect of Puckering Motion and Hydrogen Bond Formation on the Vibrational Circular Dichroism Spectrum of a Flexible Molecule: the case of (S)-1-Indanol

Katia Le Barbu-Debus,^{a)} Arne Scherrer,^{b) c)} Aude Bouchet,^{a)}

Daniel Sebastiani, ^{c)} Rodolphe Vuilleumier, * ^{b)} Anne Zehnacker, * ^{a)}

- a) Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France).
- b) PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France

c) Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, von-Danckelmann-Platz 4, 06120 Halle, Germany

*e-mail: <u>anne.zehnacker-rentien@u-psud.fr</u>, <u>rodolphe.vuilleumier@ens.fr</u>

Supplementary Information

Table S1 Energetic and structural parameters of the most stable conformers of (S)-1-indanol in a CCl₄ continuum calculated at the BLYP/6-31G++(d,p) level

	Gibbs free	Boltzmann	$C_9C_4C_3C_2$	C ₉ C ₁ OH
Geometry	energy	population	angle	angle
	(kcal/mol)	(%)	(°)	(°)
1eq	0.00	28	16.4	55.1
1ax	0.16	22	-12.7	44.9
2ax	0.64	10	-14.2	-54.6
3eq	0.56	11	16.0	-167.4
2eq	0.21	20	15.7	-77.4
3ax	0.67	9	-14.7	-176.0

Table S2 Energetic and structural parameters of the most stable conformers of (S)-1-indanol in a DMSO continuum calculated at the B3LYP-D3/6-31G++(d,p) level

	Gibbs free	Boltzmann	$C_9C_4C_3C_2$	C ₉ C ₁ OH
Geometry	energy	population	angle	angle
	(kcal/mol)	(%)	(°)	(°)
1eq	0.00	35	17.4	54.9
1ax-a	0.05	31	-13.7	54.6
1ax-b	0.46	16	-15.5	48.7
lax-c	0.57	13	-16.8	55.0
2ax	1.16	5	-15.6	-44.9

Figure S1: Raw experimental VCD spectra of R and S-1-Indanol together with the baseline (dotted line).

Figure S2: Simulated IR spectrum obtained from the weighted IR spectra of the most stable (S)-1-indanol structures in a CCl₄ continuum together with individual contributions, calculated at the B3LYP/6-31G++(d, p) level

Figure S3: Simulated IR spectrum obtained from the weighted IR spectra of the most stable 1(S)-1-indanol structures in a CCl₄ continuum together with individual contributions, calculated at the B3LYP-D3/6-31G++(d, p) level

Figure S4: Simulated VCD spectrum obtained from the weighted VCD spectra of the most stable (S)-1-indanol structures in a CCl_4 continuum together with individual contributions, calculated at the B3LYP/6-31G++(d, p) level

Figure S5: Simulated VCD spectrum obtained from the weighted VCD spectra of the most stable (S)-1-indanol structures in a CCl₄ continuum together with individual contributions, calculated at the B3LYP-D3/6-31G++(d, p) level

Figure S6: Simulated IR spectrum obtained from the weighted IR spectra of the most stable (S)-1-indanol structures in a CCl_4 continuum together with individual contributions, calculated at the BLYP/6-31G++(d, p) level.

Figure S7: Simulated VCD spectrum obtained from the weighted VCD spectra of the most stable (S)-1-indanol structures in a CCl_4 continuum together with individual contributions, calculated at the BLYP/6-31G++(d, p) level.

Figure S8: Simulated IR spectra of the most stable (S)-1-indanol:DMSO-d6 complexes in a DMSO continuum, calculated at the B3LYP/6-31G++(d, p) level, together with experimental spectrum.

Figure S9: Simulated VCD spectra of the most stable (S)-1-indanol:DMSO-d6 complexes in a DMSO continuum, calculated at the B3LYP/6-31G++(d, p) level, together with experimental spectrum

Figure S10: Simulated VCD spectra of the most stable (S)-1-indanol:DMSO-d6 complexes in a DMSO continuum, calculated at the B3LYP-D3/6-31G++(d,p) level, together with experimental spectrum.

Figure S11. Evolution of the τ_1 and τ_2 angles during the NVE trajectories. a) τ_1 and b) τ_2 angles for the trajectory at 18ps c) τ_1 and d) τ_2 angles for the trajectory at 22ps.