Electronic Supplementary Information

Half-metallicity in honeycomb-kagome-lattice Mg₃C₂ monolayer with carrier doping

Hongzhe Pan,*^{a,b} Yin Han,^a Jianfu Li,^b Hongyu Zhang,^c Youwei Du^a and Nujiang Tang*^a

 ^aNational Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China
^bSchool of Physics and Electronic Engineering, Linyi University, Linyi 276005, China
^cDepartment of Physics, East China University of Science and Technology, Shanghai 200237, China

E-mail: panhongzhe@lyu.edu.cn, tangnujiang@nju.edu.cn

Fig. S1 Schematic DOSs for various spintronic materials: (a) conventional ferromagnetic metal, (b) half-metal, (c) half-semiconductor, (d) bipolar magnetic semiconductor, and (e) spin-gapless semiconductor.

Fig. S2 (a) Top view of the optimized geometric structure and (b) phonon spectrum of the *pmmm*- Mg_3C_2 monolayer. The red dashed lines indicate the phonon dispersion curves with evident imaginary frequencies.

Fig. S3 (a) Top view of the optimized geometric structure, (b) spin-resolved total DOS, and (c) phonon spectrum of the Ca_3C_2 monolayer. The red dashed line in (c) indicates the out-of-plane transverse acoustical phonon branch with a small imaginary frequency near the Γ point.

Fig. S4 Top views of the optimized geometric structures of the (a) Sr_3C_2 and (b) Ba_3C_2 monolayers. Parts (c) and (d) are their corresponding phonon spectra, respectively. The red dashed lines indicate the phonon dispersion curves with evident imaginary frequencies.