Supplementary Information

for

Characterizing structure and properties of dry and wet polyethylene glycol using multi-scale simulations

Gokhan KACAR*

Department of Genetics and Bioengineering, Faculty of Engineering, Trakya University, 22030, Edirne, Turkey

* E-mail: gokhankacar@trakya.edu.tr

The functional forms in order to compute the DPD interaction parameters are given in the main manuscript. In Table S1, we tabulate the Flory-Huggins parameters, dimensionless number densities and the computed DPD interaction parameters. These values, together with the physical length scale of DPD are used to compute the pair-wise interaction parameters. The physical DPD length scales correspond to 6.62 Å and 5.75 Å, respectively for dry and wet PEG, which are computed by employing the average volume computation as detailed in reference ¹. Therefore, there are two sets of DPD interaction parameters (dry PEG in Table S1 and wet PEG in Table S2) as a result of the different physical length scales of DPD for the dry and wet conditions. In DPD, the magnitude of the repulsion is dependent on the value of the χ_{ij} parameter rather than the DPD parameter itself. For a more detailed information, the reader is referred to our previous work on the DPD parameterization ².

A harmonic bond potential is set for the bonded interactions of H-L, L-L and L-K. The spring constant is set as $50 kT/r_{DPD}^2$ and the bond lengths are set to 0.50 r_{DPD} . Angle potential contribution is neglected in the DPD simulations.

Table S1. Computed Flory-Huggins parameters χ_{ij} and the pairwise DPD interaction parameters a_{ij} of the coarse-grained beads of dry PEG. Values in parentheses indicate the solubility parameters δ_i in dimensions $(J/cm^3)^{0.5}$ and the dimensionless number densities of beads ρ_i obtained by $\rho_i = \rho_{i,\text{liquid}}/M_{W,i}$, in rows and columns, respectively.

Xij	L (or H) (&= 25.09)	\mathbf{K} ($\delta = 31.86$)
a _{ij}	(0, 25.07)	(01 01.00)
L (or H)	0.00	1.12
$(\rho_i = 0.0103)$	25.10	
K		0.00
$(\rho_i = 0.0112)$	27.14	20.89

Table S2. Computed Flory-Huggins parameters χ_{ij} and the pairwise DPD interaction parameters a_{ij} of the coarse-grained beads of wet PEG. Values in parentheses indicate the solubility parameters δ_i in dimensions $(J/cm^3)^{0.5}$ and the dimensionless number densities of beads ρ_i obtained by $\rho_i = \rho_{i,\text{liquid}}/M_{W,i}$, in rows and columns, respectively.

Xij _a _{ij}	L (or H) (δ_i = 25.09)	$\begin{array}{c} \mathbf{K} \\ (\delta_{\mathrm{i}} = 31.86) \end{array}$	$W \\ (\delta_i = 47.00)$
L (or H)	0.00	1.12	11.79
$(\rho_i = 0.0103)$	61.21		
K		0.00	5.63
$(\rho_i = 0.0112)$	57.69	51.15	
W			0.00
$(\rho_i = 0.0334)$	44.91	29.93	4.76

The hydrogen bonds are modeled between PEG beads and water bead with the Morse potential. The Morse potential parameters used in the simulations are taken from a previous work for the corresponding molar fraction of PEG beads ³ ($x_{PEG} = 0.50$) and tabulated in Table S3.

Table S3. Hydrogen bond interaction D_0 and the hydrogen bond equilibrium distance r_0 values used in the <u>DPD simulations</u>.

Morse parameters	L	Н	K
$D_0 [k_{\rm B}T]$	10.91	7.76	8.82
r ₀ [r _{DPD}]	0.84	0.84	0.84

References

- 1. G. Kacar, E. A. J. F. Peters and G. de With, *Soft Matter*, 2013, 9, 5785-5793.
- 2. G. Kacar, E. A. J. F. Peters and G. de With, *Epl-Europhys Lett*, 2013, **102**.
- 3. G. Kacar, *Chemical Physics Letters*, 2017, **690**, 133-139.