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1 Proof that bond order matrices in orthonormal basis
are positive semidefinite Hermitian

Firstly, it is easy to demonstrate that bond order matrices are Hermitian. Since the density
matrix D is Hermitian,1 its interfragmental blocks have the following relationships: D†AB =

DBA and D†BA = DAB. Then, from the definition of bond matrix BAB given in the manscript,
we know that B†AB = D†BAD†AB = DABDBA = BAB, and thus BAB is Hermitian.

Now, we prove that BAB and BBA are positive semidefinite matrices. Suppose BAB is an
NA ×NA matrix. Then, for any given nonzero column vector

⇀
v in CNA , we have

⇀
v
†
BAB

⇀
v =

⇀
v
†(

DABDBA

)⇀
v =

⇀
v
†(

DABD†AB

)⇀
v =

(
D†AB

⇀
v
)†(

D†AB

⇀
v
)
.

By defining a new vector
⇀
w ≡ D†AB

⇀
v , we obtain

⇀
v
†
BAB

⇀
v =

⇀
w
†⇀
w = ||⇀w||2 > 0. Therefore,

BAB is positive semidefinite by definition. In the similar way, we can prove that BBA is also
positive semidefinite Hermitian.

We should bear in mind that so far all discussions are based on orthonormal basis func-
tions. In a non-orthonormal basis, however, the Mayer bond order2–4 between two fragments
should be defined in terms of population matrix P, instead of density matrix D:

Bnon-orth
AB =

∑
µ∈A

∑
ν∈B

PµνPνµ, (S1)

where the population matrix is defined as the product of the density matrix and the overlap
matrix, i.e., P ≡ DS.2–4 As S is not the identity in a non-orthonormal basis, P is not
Hermitian. Similarly, we can define the bond order matrix between two fragments in a
non-orthonormal basis, as

Bnon-orth
AB ≡ PABPBA, (S2)

Bnon-orth
BA ≡ PBAPAB, (S3)

where the interfragmental blocks PAB and PBA are extracted from the population matrix P.
Since P is not Hermitian, it is easy to show that Bnon-orth

AB and Bnon-orth
BA are not Hermitian

either, and thus not necessarily diagonalizable.
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2 Derivation of density matrix in the MBFO basis
Here, we will derive the final form of the density matrix in the MBFO basis, as denoted
by D′. The derivation is outlined in the following. We first prove that the intrafragmental
blocks, D′AA and D′BB, are both diagonal. Then, we prove that D′ can be separated into two
submatrices associated with the bonding and the nonbonding MBFOs, D̃ and D̄. Finally,
we show that the nonbonding submatrix D̄ is a diagonal matrix with entries being either 2
or 0, while the bonding submatrix D̃ has a characteristic form as given by eqns (8)–(10) in
the manuscript.

2.1 Proof that the intrafragmental blocks of density matrix in the
MBFO basis are diagonal

We first derive eqn (4) in the manuscript. Taking the total density matrix D of a closed-shell
system, we expand the idempotency equation, D2 = 2D,5 in terms of the intra- and inter-
fragmental subblocks: (

DAA DAB
DBA DBB

)2

= 2

(
DAA DAB
DBA DBB

)
,

which leads to(
D2
AA + DABDBA DAADAB + DABDBB

DBADAA + DBBDBA D2
BB + DBADAB

)
=

(
2DAA 2DAB
2DBA 2DBB

)
.

By comparing the diagonal blocks on both sides, we know that

D2
AA + DABDBA = 2DAA,

D2
BB + DBADAB = 2DBB.

Since BAB = DABDBA and BBA = DBADAB, we thus obtain eqn (4) in the manuscript:

BAB = 2DAA −D2
AA,

BBA = 2DBB −D2
BB. (S4)

As discussed in section 2.2.1 of the manuscript, the bond matrix in the MBFO basis,
B′AB, is obtained by diagonalizing BAB in the original NAO basis with a unitary matrix QA:

B′AB = Q†ABABQA. (S5)

To emphasize the fact that B′AB is already diagonal, we also denote it by ΛAB. Using eqn
(S4), eqn (S5) becomes

ΛAB = Q†A(2DAA −D2
AA)QA. (S6)
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Since DAA is Hermitian, there must exist a unitary matrix UA that diagonalizes DAA, as:

U†ADAAUA = ΛAA. (S7)

Thus,

DAA = UAΛAAU†A. (S8)

Hence, the intrafragmental block of the density matrix in the MBFO basis is

D′AA = Q†ADAAQA = V†AΛAAVA, (S9)

where VA ≡ U†AQA is a unitary matrix, for both UA and QA are unitary.
On the other hand, by plugging eqn (S8) into eqn (S6), we get

ΛAB = V†A(2ΛAA −Λ2
AA)VA. (S10)

This equation indicates that ΛAB and (2ΛAA−Λ2
AA) are similar to each other and thus have

the same spectrum. Since both ΛAB and (2ΛAA − Λ2
AA) are diagonal, they must have the

same diagonal entries but possibly in different order. In the following, we will divide our
discussion into two cases.

First, we consider the nondegenerate case, where the eigenvalues of BAB are all distinct,
and so are the diagonal entries of ΛAB and those of (2ΛAA−Λ2

AA). As we have seen that ΛAB

and (2ΛAA −Λ2
AA) only differ in the ordering of diagonal entries which are all distinct, eqn

(S10) indicates that VA is just a row-column switching matrix. As a result, from eqn (S9) we
know that D′AA is a diagonal matrix, which is obtained by swapping certain diagonal entries
of ΛAA. Therefore, we conclude that in nondegenerate cases QA is the eigenvector matrix
that diagonalizes both DAA and BAB. The intrafragmental block of the density matrix, DAA,
is simultaneously diagonal in the MBFO basis.

Second, in the degenerate case, some eigenvalues of BAB are identical, and so are some of
the diagonal entries of ΛAB and of (2ΛAA−Λ2

AA). This means that not all the eigenvectors in
matrix VA are unique; we can obtain different matrices VA by making arbitrary combinations
of the eigenvectors associated with the same eigenvalues of BAB. Consequently, VA is not
necessarily a row-column switching matrix, and thus not all choices of VA can make D′AA

diagonal (see eqn (S9)). Here, we show that, by choosing QA = UA (and thus VA = I),
both D′AA and B′AB are simultaneously diagonal. According to eqns (S7) and (S9), by
using the unitary transformation with UA, we diagonalize DAA to D′AA = ΛAA. Then,
B′AB = 2D′AA−D′ 2AA = 2Λ′AA−Λ′ 2AA is also diagonal. We further show that BAB is diagonalized
to B′AB exactly by UA, because B′AB = 2Λ′AA − Λ′ 2AA = 2

(
U†ADAAUA

)
−
(
U†ADAAUA

)2
=

U†A(2DAA −D2
AA)UA = U†ABABUA.

Obviously, the same discussion holds for fragment B. To sum up, in all cases (whether
degenerate or not), we can always diagonalize first DAA (or DBB) with a unitary matrix UA

(or UB), and then the latter must simultaneously diagonalize BAB (or BBA).
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2.2 Separation of the density submatrices associated with the bond-
ing and the nonbonding MBFOs

Let’s divide the whole density matrix in the full MBFO basis, D′, into intra- and interfrag-
mental blocks:

D′ =

(
D′AA D′AB

D′BA D′BB

)
. (S11)

For the intrafragmental blocks, D′AA and D′BB, which are already diagonal (as proved in
section 2.1), we divide each of them into smaller blocks in terms of the bonding and the
nonbonding MBFOs:

D′AA =

(
Λbb

AA 0
0 Λnn

AA

)
, (S12)

D′BB =

(
Λbb

BB 0
0 Λnn

BB

)
, (S13)

where the superscripts ‘b’ and ‘n’ denote, respectively, the bonding and the nonbonding
MBFOs; the symbol ‘Λ’ indicates that the referred matrix is diagonal. Likewise, the inter-
fragmental blocks, D′AB and D′BA, can also be divided into subblocks associated with the
bonding and the nonbonding MBFOs:

D′AB =

(
D′bbAB D′bnAB

D′nbAB D′nnAB

)
, (S14)

D′BA =

(
D′bbBA D′bnBA

D′nbBA D′nnBA

)
. (S15)

Thus, the bond order matrix in the full MBFO basis is:

B′AB = D′ABD′BA =

(
D′bbABD′bbBA + D′bnABD′nbBA D′bbABD′bnBA + D′bnABD′nnBA

D′nbABD′bbBA + D′nnABD′nbBA D′nbABD′bnBA + D′nnABD′nnBA

)
. (S16)

Since B′AB is already diagonal and all bond orders between the nonbonding MBFOs are zero,
we have

D′bbABD′bbBA + D′bnABD′nbBA = Λ̃, (S17)
D′nbABD′bnBA + D′nnABD′nnBA = 0, (S18)
D′bbABD′bnBA + D′bnABD′nnBA = 0, (S19)
D′nbABD′bbBA + D′nnABD′nbBA = 0, (S20)

where Λ̃ is a diagonal matrix, whose diagonal entries consist, and consist only all positive
eigenvalues of B′AB.

Before proceeding with the proof, we introduce the following lemma.
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Lemma: For any matrices A and B of the same size, if

A†A + B†B = 0, (S21)

then A = B = 0.
Here is the proof. As demonstrated in section 2.1, the product A†A is positive semidef-

inite Hermitian. This means that A†A can be diagonalized by a unitary matrix U to ΛA,
whose diagonal entries are all nonnegative. Now, we perform a unitary transformation with
U to both sides of eqn (S21), as follows: U†A†AU + U†B†BU = U†0U, which leads to
(BU)†(BU) = −ΛA. As we know, (BU)†(BU) is also positive semidefinite, and thus the
left-hand side has all nonnegative diagonal entries. On the other hand, the right-hand side
has all nonpositive diagonal entries, for all diagonal entries of ΛA are nonnegative. Conse-
quently, the only possibility is that (BU)†(BU) = ΛA = 0. Hence, A†A = UΛAU† = 0.
If we suppose (A)ij = aij, then (A†A)ij =

∑
k a
∗
ikajk = 0. Just by looking at the diagonal

entries, (A†A)ii =
∑

k |aik|2 = 0, we know that aik = 0 for all (i, k), i.e., A = 0. Following
the same procedure, we can prove that B = 0. Q.E.D.

By applying this lemma to eqn (S18), and noticing that D′nbAB = (D′bnBA)† and D′nnAB =
(D′nnBA)†, we obtain

D′nbAB = D′bnBA = 0, (S22)
D′nnAB = D′nnBA = 0. (S23)

By expanding B′BA in the same manner as we expand B′AB in eqn (S16), we can similarly
prove that

D′bnAB = D′nbBA = 0. (S24)

As a result, according to eqns (S14) and (S15), the interfragmental blocks of the density
matrix in the full MBFO basis become

D′AB =

(
D′bbAB 0

0 0

)
, (S25)

D′BA =

(
D′bbBA 0

0 0

)
. (S26)

Therefore, the density matrix in the full MBFO basis is

D′ =

(
D′AA D′AB

D′BA D′BB

)
=


Λbb

AA 0 D′bbAB 0
0 Λnn

AA 0 0
D′bbBA 0 Λbb

BB 0
0 0 0 Λnn

BB

 . (S27)

By rearranging the subblocks in the order of the bonding MBFOs followed by the nonbonding
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ones, we finally obtain:

D′ =

(
D̃ 0
0 D̄

)
, (S28)

where the submatrix associated with the bonding MBFOs, D̃, is defined as

D̃ ≡
(

Λbb
AA D′bbAB

D′bbBA Λbb
BB

)
, (S29)

and that associated with the nonbonding MBFOs, D̄, is defined as

D̄ ≡
(

Λnn
AA 0
0 Λnn

BB

)
. (S30)

Furthermore, according to eqns (S16)–(S20), the whole bond order matrix in the full
MBFO basis is reduced to

B′AB =

(
D′bbABD′bbBA 0

0 0

)
=

(
Λ̃ 0
0 0

)
, (S31)

indicating that all positive eigenvalues of the bond order matrix of the whole system can
be fully derived from the density submatrix in terms of the bonding MBFOs. We can thus
define the bond order matrix in terms of only the bonding MBFOs as

B̃AB ≡ D′bbABD′bbBA = Λ̃, (S32)

so that

B′AB =

(
B̃AB 0

0 0

)
. (S33)

Similar relationship can be obtained for B′BA and B̃BA. Moreover, since there is a one-
to-one correspondence between all positive eigenvalues of BAB and those of BBA, B̃AB and
B̃BA must be the same diagonal matrix:

B̃AB = B̃BA = Λ̃. (S34)

2.3 Density matrix D̄ in the nonbonding MBFO basis

Using eqn (S28), it is easy to verify that the idempotent property also holds for D̃ and D̄:

2D̃ = D̃2, (S35)
2D̄ = D̄2. (S36)

On the other hand, since D̄ is a diagonal matrix (see eqn (S30)), let {λ̄i} denotes its diagonal
entries. Then, from eqn (S36) we get λ̄i(λ̄i − 2) = 0, which means that either λ̄i = 0 or
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λ̄i = 2, and thus proves that the diagonal matrix D̄ only have entries of either 2 or 0.

2.4 Density matrix D̃ in the bonding MBFO basis

2.4.1 Separation of nondegenerate and degenerate groups

Among all 2m bonding MBFOs, we suppose that there are γ groups of degenerate bonding
MBFOs, each of which is associated with mg

k identical eigenvalues of BAB (mg
k > 2 and

k = 1, 2, . . . , γ). We put all the rest mh nondegenerate bonding MBFOs together, which are
associated with mh eigenvalues that are all distinct from one another. For convenience, we
arrange all bonding MBFO basis functions in the following order: the nondegenerate group
and the degenerate groups of bonding MBFOs of A, followed by the nondegenerate group
and the degenerate groups of bonding MBFOs of B. Accordingly, the bond order matrix in
this basis, which is diagonalized, takes the following form:

B̃AB = B̃BA =


Λ̃h

AB

Λ̃g1
AB

Λ̃g2
AB

. . .
Λ̃
gγ
AB

 =


Λ̃h

AB

Bg
1I

Bg
2I

. . .
Bg
γI

 (S37)

where Bg
k is the eigenvalue (bond order) corresponding to the kth degenerate group.

As proved in section 2.1, all intrafragmental blocks of the density matrix in the MBFO
basis are diagonal, and thus so are the intrafragmental blocks of D̃, which take the following
form:

D̃AA =


Λ̃h

AA

Λ̃g1
AA

Λ̃g2
AA

. . .
Λ̃
gγ
AA

 (S38)

and

D̃BB =


Λ̃h

BB

Λ̃g1
BB

Λ̃g2
BB

. . .
Λ̃
gγ
BB

 (S39)

where the symbol Λ̃ denotes a diagonal matrix; the superscripts h and gk indicate, respec-
tively, the nondegenerate group and the kth degenerate group of bonding MBFOs.

For the diagonal blocks corresponding to degenerate groups, Λ̃gk
AA and Λ̃gk

BB, they have
identical diagonal entries, which can be proved as follows. According to eqns (S4) and (S28),
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we know that B̃AB = 2D̃AA − D̃2
AA. Then, from eqns (S37) and (S38), we get

Bg
kI = 2Λ̃gk

AA − (Λ̃gk
AA)2. (S40)

This equation infers that all diagonal entries of Λ̃gk
AA are the same and we thus have

Λ̃gk
AA = ngkA I, (S41)

where ngkA is constant for the same degenerate group gk, and has the meaning of the occpancy
of an MBFO. Similar results can be obtained for B′s degenerate bonding MBFOs:

Λ̃gk
BB = ngkB I. (S42)

Now, let’s examine the interfragmental blocks, D̃AB and D̃BA. We first demonstrate that
both matrices are unitarily diagonalizable. According to eqn (S34), D̃ABD̃BA = D̃BAD̃AB,
namely, D̃AB and D̃BA commute with each other. Since D̃BA = D̃†AB, it is evident that
D̃ABD̃†AB = D̃†ABD̃AB, meaning that D̃AB and D̃BA are normal matrices,6 and thus are
diagonalizable by a unitary matrix.

Furthermore, we show that D̃AB and D̃BA are both invertible. For the convenience of
discussion, we rewrite eqn (S34) as two separate equations:

D̃ABD̃BA = Λ̃, (S43)

D̃BAD̃AB = Λ̃. (S44)

Since the diagonal entries of the diagonal matrix Λ̃, {λ̃i}, are all positive eigenvalues associ-
ated with the bonding MBFOs, we can define Λ̃−1 and Λ̃−

1
2 as the diagonal matrices whose

diagonal entries are {λ̃−1i } and {λ̃
− 1

2
i }, respectively. By left and right multiplying both sides

of eqn (S43) by Λ̃−
1
2 and using that D̃AB = D̃†BA, we obtain (D̃BAΛ̃−

1
2 )†(D̃BAΛ̃−

1
2 ) = I,

which means that U ≡ D̃BAΛ̃−
1
2 is a unitary matrix. Hence, D̃BA = UΛ̃

1
2 is invertible, and

its inverse is D̃−1BA = Λ̃−
1
2 U† = Λ̃−

1
2 (D̃BAΛ̃−

1
2 )† = Λ̃−1D̃AB. Similarly, we can prove that

D̃AB is invertible and its inverse is D̃−1AB = Λ̃−1D̃BA.
Next, we want to prove that both D̃AB and D̃BA commute with the diagonal matrix Λ̃.

By right multiplying both sides of eqn (S43) by D̃−1BA, we get D̃AB = Λ̃D̃−1BA. Meanwhile, we
can also left multiply both sides of eqn (S44) by D̃−1BA and obtain D̃AB = D̃−1BAΛ̃. Therefore,
we have Λ̃D̃−1BA = D̃−1BAΛ̃. By left and right multiplying both sides by D̃BA, we get D̃BAΛ̃ =

Λ̃D̃BA. In similar way, we can prove D̃ABΛ̃ = Λ̃D̃AB.
Supposing that the matrix elements of D̃AB are denoted by (D̃AB)ij = aij, it is easy to

show that (D̃ABΛ̃AB)ij = λjaij and (Λ̃ABD̃AB)ij = λiaij. As D̃ABΛ̃AB = Λ̃ABD̃AB, we know
that λjaij = λiaij for all (i, j). Consequently, for all (i, j) pairs with i 6= j and λi 6= λj,
we must have aij = aji = 0. This indicates that the off-diagonal element of D̃AB vanishes
if it is associated with two bonding MBFOs that correspond to distinct eigenvalues of the
bond order matrix. As a result, for D̃AB, the off-diagonal subblocks between two different
degenerate groups, gk and gl (k 6= l), and those between the nondegenerate group and any
degenerate group, are all zeros. Moreover, since all corresponding eigenvalues are distinct
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within the nondegenerate group, the entire nondegenerate subblock is diagonal. Therefore,
D̃AB takes the following form:

D̃AB =


Λ̃h

AB

D̃g1
AB

D̃g2
AB

. . .
D̃
gγ
AB

 . (S45)

Likewise, it can be demonstrated that

D̃BA =


Λ̃h

BA

D̃g1
BA

D̃g2
BA

. . .
D̃
gγ
BA

 . (S46)

Finally, by placing together the subblocks corresponding to the same degenerate or non-
degenerate group in eqns (S38), (S39), (S45) and (S46), we obtain D̃ in the following form:

D̃ =


D̃h

D̃g1

D̃g2

. . .
D̃gγ

 , (S47)

where the subblock associated with the nondegenerate group, h, is

D̃h =

(
Λ̃h

AA Λ̃h
AB

Λ̃h
BA Λ̃h

BB

)
(S48)

and the subblock associated with the kth degenerate group, gk, is

D̃gk =

(
Λ̃gk

AA D̃gk
AB

D̃gk
BA Λ̃gk

BB

)
=

(
ngkA I D̃gk

AB

D̃gk
BA ngkB I

)
, (S49)

where ngkA and ngkB are single numbers, corresponding to the natural occupancy of a bonding
MBFO in group gk. Note that Λ̃h

AA, Λ̃h
BB, Λ̃h

AB, Λ̃h
BA, Λ̃gk

AA and Λ̃gk
BB are all diagonal matrices,

while D̃gk
AB and D̃gk

BA are not necessarily diagonal. The procedure of diagonalizing D̃gk
AB and

D̃gk
BA is provided in the next subsection. In addition, eqn (S49) also indicates that all bonding

MBFOs of A (or of B) that are degenerate in bond order have the same occupancy.
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2.4.2 Diagonalization of D̃gk
AB and D̃gk

BA

Given a degenerate group gk of bonding MBFOs, let’s consider a unitary matrix Q̃gk
A that

transforms the mg
k degenerate bonding MBFOs of A, and a unitary matrix Q̃gk

B that trans-
forms the mg

k degenerate bonding MBFOs of B. Thus, the total transformation matrix for
all 2mg

k bonding MBFOs of A and B is written as

Q̃gk =

(
Q̃gk

A 0

0 Q̃gk
B

)
. (S50)

Hence, according to eqns (S50) and (S49), the transformed density matrix is

D̃gk′ = Q̃gk†D̃gkQ̃gk =

(
ngkA I Q̃gk†

A D̃gk
ABQ̃gk

B

Q̃gk†
B D̃gk

BAQ̃gk
A ngkB I

)
. (S51)

By comparing it with eqn (S49), we can see that the diagonal blocks of D̃gk remain unaltered
after the basis transformation by Q̃gk .

Now, we show that the off-diagonal blocks of D̃gk′ are diagonalized if the unitary matrices
Q̃gk

A and Q̃gk
B fullfil the following relationship:

Q̃gk
B =

1√
Bg
k

D̃gk
BAQ̃gk

A . (S52)

With the transformation matrices given by this equation, the off-diagonal block D̃gk′
AB is:

D̃gk′
AB = Q̃gk†

A D̃gk
ABQ̃gk

B = Q̃gk†
A D̃gk

AB

1√
Bg
k

D̃gk
BAQ̃gk

A =
1√
Bg
k

Q̃gk†
A B̃gk

ABQ̃gk
A . (S53)

Notice that the bond order matrix B̃gk
AB, which corresponds to the degenerate group gk, is

already diagonalized with identical diagonal elements (see eqn (S37)):

B̃gk
AB = Λ̃gk

AB = Bg
kI. (S54)

Thus, from eqn (S53), we know that D̃gk′
AB is diagonal with identical diagonal elements:

D̃gk′
AB =

√
Bg
kI. (S55)

Likewise, we can show that D̃gk′
BA is also diagonal with identical diagonal elements:

D̃gk′
BA = Q̃gk†

B D̃gk
BAQ̃gk

A =

(
1√
Bg
k

D̃gk
BAQ̃gk

A

)†
D̃gk

BAQ̃gk
A =

√
Bg
kI. (S56)

In addition, it is easy to check that the corresponding bond order matrices, B̃gk′
AB and B̃gk′

BA,
are unaltered after the basis transformation (cf. eqn (S54)): B̃gk′

AB = D̃gk′
ABD̃gk′

BA = Bg
kI and

B̃gk′
BA = D̃gk′

BAD̃gk′
AB = Bg

kI.
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To diagonalize the off-diagonal blocks of D̃gk , as we can see, there exist an infinite number
of choices of unitary matrices Q̃gk

A and Q̃gk
B , as long as eqn (S52) is fullfilled. A simple

straightforward option is to just choose

Q̃gk
A = I,

Q̃gk
B =

1√
Bg
k

D̃gk
BA.

(S57)

Then, the transformed density matrix for the degenerate group gk becomes

D̃gk′ =

(
ngkA I

√
Bg
kI√

Bg
kI ngkB I

)
. (S58)

2.4.3 Final form of D̃

To sum up the results of the preceding two subsections, the density matrix in terms of the
2m bonding MBFOs, D̃, can be eventually reduced to the following form:

D̃ =



nA
1

√
B1

nA
2

√
B2

. . . . . .
nA
m

√
Bm√

B1 nB
1√

B2 nB
2

. . . . . .√
Bm nB

m


(S59)

where nA
i and nB

i are the occupancy of θ̃Ai and θ̃Bi , respectively, and Bi the bond order
between θ̃Ai and θ̃Bi .

We can further show that

nA
i + nB

i = 2, (S60)
Bi = nA

i n
B
i . (S61)

The proof is as follows.
According to eqn (S59), D̃ has the form:

D̃ =

(
Λ̃AA Λ̃AB

Λ̃BA Λ̃BB

)
, (S62)

where all four subblocks are an m ×m diagonal matrix, and (Λ̃AA)ii = nA
i , (Λ̃BB)ii = nB

i ,
(Λ̃AB)ii = (Λ̃BA)ii =

√
Bi (i = 1, 2, . . . ,m). Therefore, eqn (S35) leads to the following
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equations:

Λ̃2
AA + Λ̃2

AB = 2Λ̃AA, (S63)

Λ̃2
BB + Λ̃2

AB = 2Λ̃BB, (S64)

(Λ̃AA + Λ̃BB − 2I)Λ̃AB = 0. (S65)

Since the product of two diagonal matrices is just the multiplication of their diagonal entries,
eqn (S65) is thus equivalent to (nA

i + nB
i − 2)

√
Bi = 0. As

√
Bi > 0 for all bonding MBFOs,

we then arrive at eqn (S60): nA
i + nB

i = 2.
On the other hand, by summing up eqns (S63) and (S64), we obtain Λ̃2

A + Λ̃2
B + 2Λ̃2

AB =
2(Λ̃A + Λ̃B), and hence (nA

i )2 + (nB
i )2 + 2Bi = 2(nA

i + nB
i ). Combining it with eqn (S60), we

thus obtain eqn (S61): Bi = nA
i n

B
i .
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3 Determination of MBO coefficients
Following the discussion in the manuscript, a pair of MBFOs, θ̃Ai and θ̃Bi , form a bonding
MBO and an antibonding MBO:

Ωi = aiθ̃
A
i + biθ̃

B
i , (S66)

Ω∗i = biθ̃
A
i − aiθ̃Bi . (S67)

This transformation can be represented by the following matrix:

T̃ =

(
Λa Λb

Λb −Λa

)
, (S68)

where Λa and Λb are m × m diagonal matrices with (Λa)ii = ai and (Λb)ii = bi (i =
1, 2, . . . ,m). Since both MBFOs and MBOs are orthonormal bases, the transformation
matrix T̃ should be unitary, which requires that Λ2

a + Λ2
b = I. Accordingly, from eqns (S62)

and (S68), the density matrix in the bonding MBO basis becomes

DMBO = T̃†D̃T̃

=

(
Λ2
aΛ̃AA + Λ2

bΛ̃BB + 2ΛaΛbΛ̃AB ΛaΛb(Λ̃AA − Λ̃BB)− (Λ2
a −Λ2

b)Λ̃AB

ΛaΛb(Λ̃AA − Λ̃BB)− (Λ2
a −Λ2

b)Λ̃AB Λ2
bΛ̃AA + Λ2

aΛ̃BB − 2ΛaΛbΛ̃AB

)
.

(S69)

Following our chemical intuition, in ground state the occupancies should be maximized for
the bonding MBOs and minimized for the antibonding ones. This means that we are looking
for an optimal set of coefficients {ai} and {bi} so that DMBO is diagonalized. Consequently,
the required set of {ai} and {bi} must fulfill that

ΛaΛb(Λ̃AA − Λ̃BB)− (Λ2
a −Λ2

b)Λ̃AB = 0, (S70)

which leads to

aibi(n
A
i − nB

i )− (a2i − b2i )
√
nA
i n

B
i = 0. (i = 1, 2, . . . ,m) (S71)

Using eqns (S60) and (S71) with the normalization condition, a2i + b2i = 1, and noticing that
ai bi, nA

i , nB
i are all positive, we obtain

ai =

√
nA
i

2
,

bi =

√
nB
i

2
. (S72)
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With this result, it is easy to verify (using eqn (S69)) that

DMBO =

(
2I 0
0 0

)
, (S73)

where matrices I and 0 are both of dimension m×m.
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4 Derivation of the expressions of MBO bond energy
As defined in the manuscript, the bond energy of the i-th bonding MBO, Ωi, is

∆Ei ≡ 2(εAi − εMBO
i ), (S74)

where εAi is the energy of the electron-withdrawing MBFO (i.e., assuming that εAi 6 εBi ) and
εMBO
i is the energy of MBO, Ωi, which is evaluated as

εMBO
i = 〈Ωi|F̂ |Ωi〉 =

nA
i

2
εAi +

nB
i

2
εBi +

√
BiFi. (S75)

Plugging eqn (S75) into eqn (S74), we obtain

∆Ei = (2− nA
i )εAi − nB

i ε
B
i − 2

√
BiFi. (S76)

Since we have assumed that εAi 6 εBi , there are normally more electrons populated in fragment
A than in fragment B, namely, nA

i > nB
i . Hence, nA

i = 1 + δi and nB
i = 1− δi. As a result,

eqn (S76) becomes

∆Ei = (δi − 1)(εBi − εAi )− 2
√
BiFi

= (δi − 1)∆i − 2
√
BiFi. (S77)

Noticing that Bi = 1 − δ2i , we see from eqn (S77) that ∆Ei is a function of δi. Thus, there
exist an optimal value of δi = δopti that determines the maximum possible value of ∆Ei,
given that ∆i and Fi are fixed.

Let δi = cos θ,
√
Bi = sin θ (0 6 θ 6 π/2) and ∆AB

i /r = cosϕ,−2Fi/r = sinϕ (0 6 ϕ 6
π/2), where r ≡

√
∆i

2 + 4Fi
2. Then, eqn (S77) is transformed to

∆Ei =
√

∆i
2 + 4Fi

2 cos(θ − ϕ)−∆i.

Evidently, ∆Ei takes the maximum value of
√

∆i
2 + 4Fi

2 −∆i when cos(θ − ϕ) = 1. Since
both θ and ϕ lie between 0 and π/2, we know that θ = ϕ gives the maximum ∆Ei. Therefore,
the optimal values of δi and Bi are

δopti = cos θ = cosϕ =
∆i√

∆i
2 + 4F 2

i

, (S78)

Bopt
i = sin2 θ = sin2 ϕ =

4F 2
i

∆i
2 + 4F 2

i

. (S79)

Let

α ≡ ∆i

2|Fi|
, (S80)
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then both δopti and Bopt
i are exclusively a function of α:

δopti =
α√

1 + α2
, (S81)

Bopt
i =

1

1 + α2
. (S82)

Consequently, the MBO bond energy ∆Ei, as variationally determined by δopti , is then

∆Ei =
√

∆2
i + 4F 2

i −∆i. (S83)

In the case of MBOs with strong covalent character, δi ≈ 0, Bi ≈ 1 and thus α ≈ 0 and
∆i � |Fi|. Accordingly, eqn (S83) can be approximated as

∆Ei = 2|Fi|(
√

1 + α2 − α) ≈ 2|Fi|(1 +
1

2
α2 − α)

≈ 2|Fi|(1− α) = 2
(
|Fi| −

∆i

2

)
. (S84)

On the other hand, for highly polarized MBOs, δi ≈ 1, Bi ≈ 0 and thus 1/α ≈ 0 and
∆i � |Fi|. Hence, we have the following approximation for eqn (S83):

∆Ei = ∆i(
√

1 + 1/α2 − 1) ≈ ∆i(1 +
1

2α2
− 1) =

∆i

2α2
= 2

F 2
i

∆i

. (S85)

Meanwhile, the charge transfer from the donor MBFO (θAi ) to the acceptor MBFO (θBi ) can
be estimated as (note that 1/α ≈ 0):

∆qi = nB
i = 1− δi = 1− α√

1 + α2
≈ 1

2α2
= 2
( Fi

∆i

)2
. (S86)

Now, by including the second order term in the Taylor expansion of
√

1 + 1/α2 in eqn
(S85), we have

∆Ei = ∆i(
√

1 + 1/α2 − 1) ≈ ∆i(1 +
1

2α2
− 1

8α4
− 1) =

∆i

4α2
(2− 1

2α2
)

= (2−∆qi)
F 2
i

∆i

= nA
i

F 2
i

∆i

. (S87)
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5 MBFO analysis for H-bond complexes at the M06/def2-
TZVPP level

Fig. S1 shows the results of the MBFO analysis for some H-bond complexes at the M06/def2-
TZVPP level. Comparing this figure with Fig. 8 in the manuscript, we can see that the
results of MBFO analysis at both the M06/def2-TZVPP and B3LYP/aug-cc-pvDZ levels
give quite similar MBFO orbital shapes, decomposed bond orders and MBO bond energies.

        B1 = 0.012
ΔE1 = 2.5 kcal/mol

        B2 = 0.010
ΔE2 = 1.6 kcal/mol

(c)  θBH−41   +  θH2O
1 (d)  θF−

1   +  θHF
1

(a)  θH2CO
1   +  θNH31 (b)  θH2CO

2   +  θNH32

        B1 = 0.037
ΔE1 = 7.5 kcal/mol

         B1 = 0.405
ΔE1 = 157.5 kcal/mol

Figure S1. Results of the MBFO analysis at the M06/def2-TZVPP level of theory.
Interaction between the principal MBFO pairs (θA1 and θB1 ) in H-bond complexes, (a)
H2CO· · ·HNH2, (c) H3BH− · · ·HOH and (d) F−HF. The interaction between the second
principal MBFO pairs (θA2 and θB2 ) is also shown for complex H2CO· · ·HNH2 (panel b). In
each case, the positive and negative phases of donor MBFO are indicated by red and green
colors, respectively, while the corresponding color codes for acceptor MBFO are orange and
blue, respectively. All orbitals are plotted with an isovalue of 0.03. The corresponding bond
order (Bi) and bond energy (∆Ei) are also given.
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6 Orbital interaction diagrams for MgCp2 and BaCp2

The orbital interaction diagrams for MgCp2 and BaCp2 are presented in Figure S2. For
clarity, we only show the most important MBOs and the corresponding MBFOs with a bond
order greater than 0.03.
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Figure S2. Orbital interaction diagram for (a) MgCp2 and (b) BaCp2. For clarity, only
MBOs and the corresponding MBFOs with a bond order greater than 0.03 are shown. Filled
energy levels are indicated in dark blue with two yellow triangles representing an electron
pair, and empty levels are distinguished by light blue color. The MBFOs and MBOs are
labeled by their symmetry notation, which, in the case of antibonding MBOs, is followed by
an asterisk. The oxidation state +2 of the metal, as denoted by Mg2+ or Ba2+, has been
determined by filling electrons into lowest possible energy MBFOs.
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7 Orbital deformation for Cp− rings in MCp2 complex
with respect to the isolated Cp− rings

Figure S3 plots the difference in wave function between the MBFO of Cp− rings in MCp2

complex and the corresponding MO of the isolated Cp− rings, for the three leading metal–
ligand bonding interactions in FeCp2, BeCp2 and CaCp2. As we can see, all three leading
MBFOs of Cp− rings in FeCp2 have undergone a substantial deformation. For BeCp2, only
the leading MBFO (A′

1) of Cp− rings shows a considerable deformation. As to CaCp2, the
deformation of MBFOs of Cp− rings is much less significant.

 E''
1 A'

1

(a) FeCp2

(b) BeCp2

(c) CaCp2

 E'
1 A'

1

 E''
1 A'

1

(0.998) (0.352)

(0.339) (0.084)

(0.127) (0.107)

Figure S3. The difference in wave function between the MBFO of Cp− rings in MCp2 and
the corresponding MO of the isolated Cp− rings, for (a) FeCp2, (b) BeCp2 and (c) CaCp2.
Only the MBFOs corresponding to the three leading metal–ligand interactions are shown
(with bond orders given in parentheses). All isosurfaces are plotted with an isovalue of 0.05.
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