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1 Proof that bond order matrices in orthonormal basis
are positive semidefinite Hermitian

Firstly, it is easy to demonstrate that bond order matrices are Hermitian. Since the density
matrix D is Hermitian,! its interfragmental blocks have the following relationships: DL(B =
Dy, and D% 4 = Dys. Then, from the definition of bond matrix B4s given in the manscript,
we know that BLB = D%ADi113 = Dy3D3g4 = Bys, and thus By is Hermitian.

Now, we prove that B,yg and Bg, are positive semidefinite matrices. Suppose Bygp is an
Ny x Ny matrix. Then, for any given nonzero column vector v in CN4, we have

—

ZTBATE _— (DABDBA)5 — %' (DABqugg)z = (DLB"J)T(DTLLB?)'

By defining a new vector w = DLBS, we obtain STBAgg —ww= ||w|[> = 0. Therefore,
B3 is positive semidefinite by definition. In the similar way, we can prove that Bz, is also
positive semidefinite Hermitian.

We should bear in mind that so far all discussions are based on orthonormal basis func-
tions. In a non-orthonormal basis, however, the Mayer bond order?* between two fragments
should be defined in terms of population matriz P, instead of density matrix D:

By =3 "N " PPy (S1)

ueA veB

where the population matrix is defined as the product of the density matrix and the overlap
matrix, i.e., P = DS.2* As S is not the identity in a non-orthonormal basis, P is not
Hermitian. Similarly, we can define the bond order matrix between two fragments in a
non-orthonormal basis, as

H T = PapPaa, (S2)
B " = PaaPas, (S3)

where the interfragmental blocks P4 and Pgy are extracted from the population matrix P.
Since P is not Hermitian, it is easy to show that Bjoorth and Bir<™ are not Hermitian
either, and thus not necessarily diagonalizable.
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2 Derivation of density matrix in the MBFO basis

Here, we will derive the final form of the density matrix in the MBFO basis, as denoted
by D’. The derivation is outlined in the following. We first prove that the intrafragmental
blocks, D/, , and D44, are both diagonal. Then, we prove that D’ can be separated into two
submatrices associated with the bonding and the nonbonding MBFOs, D and D. Finally,
we show that the nonbonding submatrix D is a diagonal matrix with entries being either 2
or 0, while the bonding submatrix D has a characteristic form as given by eqns (8)-(10) in
the manuscript.

2.1 Proof that the intrafragmental blocks of density matrix in the
MBFO basis are diagonal

We first derive eqn (4) in the manuscript. Taking the total density matrix D of a closed-shell
system, we expand the idempotency equation, D? = 2D,® in terms of the intra- and inter-

fragmental subblocks:
2
<DAA DAB) ZQ(DAA DAB)
Dpa Dss Dsa Dss)’

which leads to

D% 4 +DasDsa  DauDas+DasDss) _ (2Daa 2Das
DpsDa+DpsDps Dgg +DgaDug 2Dpa 2Dps/)

By comparing the diagonal blocks on both sides, we know that

D? 4 + DusDpa = 2D 44,
D% + DpaD s = 2Dgp.

Since Bys = DygDgy and Bgy = DgyD s, we thus obtain eqn (4) in the manuscript:

Bus = 2Da4 — D%y,
Bgg = 2Dgp — D3y (S4)

As discussed in section 2.2.1 of the manuscript, the bond matrix in the MBFO basis,
B/,5, is obtained by diagonalizing B 45 in the original NAO basis with a unitary matrix Qa:

Bs = Q) BasQua. (S5)

To emphasize the fact that B';; is already diagonal, we also denote it by A4s. Using eqn
(S4), eqn (S5) becomes

Aaz = Q) (2D 44 — D%,)Qu. (S6)
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Since D, is Hermitian, there must exist a unitary matrix U, that diagonalizes D4, as:
UlDuUs = Aa. (S7)
Thus,
Dy = UgAaaU. (S8)
Hence, the intrafragmental block of the density matrix in the MBFO basis is
Dy = QiDauQu = ViA LV, (S9)

where V4 = ULQ 4 1s a unitary matrix, for both U4 and Q4 are unitary.
On the other hand, by plugging eqn (S8) into eqn (S6), we get

Aus = VI(2A 40 — A%,V (S10)

This equation indicates that Ags and (2A44 — A% ,) are similar to each other and thus have
the same spectrum. Since both Ays and (2A44 — A% ) are diagonal, they must have the
same diagonal entries but possibly in different order. In the following, we will divide our
discussion into two cases.

First, we consider the nondegenerate case, where the eigenvalues of B, are all distinct,
and so are the diagonal entries of A4 and those of (2A 44 — Afl ). As we have seen that A gz
and (2A 44 — A% ) only differ in the ordering of diagonal entries which are all distinct, eqn
(510) indicates that V 4 is just a row-column switching matrix. As a result, from eqn (S9) we
know that D’; , is a diagonal matrix, which is obtained by swapping certain diagonal entries
of Agq. Therefore, we conclude that in nondegenerate cases Qu is the eigenvector matrix
that diagonalizes both D44 and B43. The intrafragmental block of the density matrix, D44,
is simultaneously diagonal in the MBFO basis.

Second, in the degenerate case, some eigenvalues of B 44 are identical, and so are some of
the diagonal entries of A4g and of (2A 44 —Ail 4)- This means that not all the eigenvectors in
matrix V 4 are unique; we can obtain different matrices V4 by making arbitrary combinations
of the eigenvectors associated with the same eigenvalues of Byg. Consequently, V4 is not
necessarily a row-column switching matrix, and thus not all choices of V4 can make D/, ,
diagonal (see eqn (S9)). Here, we show that, by choosing Q4 = Uy, (and thus V4 = I),
both D/, and B/}, are simultaneously diagonal. According to eqns (S7) and (S9), by
using the unitary transformation with Uy, we diagonalize Dyy to D', = Auu. Then,
B, = 2D/, ,— D% = 2A’, ,— A’} is also diagonal. We further show that B 43 is diagonalized
to By exactly by Uy, because By = 20, — A2 = 2(UND Uy) — (U D4UL)° =
Ul (2D — D%,)U, = Ul BysUy.

Obviously, the same discussion holds for fragment B. To sum up, in all cases (whether
degenerate or not), we can always diagonalize first D4 (or Dgg) with a unitary matrix U4
(or Ug), and then the latter must simultaneously diagonalize B4z (or Bgy).
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2.2 Separation of the density submatrices associated with the bond-
ing and the nonbonding MBFOs

Let’s divide the whole density matrix in the full MBFO basis, D/, into intra- and interfrag-
mental blocks:

D’ D’
- (B D) o
D), Di, (511)

For the intrafragmental blocks, D’,, and D/, which are already diagonal (as proved in

section 2.1), we divide each of them into smaller blocks in terms of the bonding and the
nonbonding MBFOs:

AbP 0)
D, = ( R 312
AA 0 AAA ( )
Abb 0
A BB

where the superscripts ‘b’ and ‘n’ denote, respectively, the bonding and the nonbonding
MBFOs; the symbol ‘A’ indicates that the referred matrix is diagonal. Likewise, the inter-
fragmental blocks, D’ and D7, can also be divided into subblocks associated with the
bonding and the nonbonding MBFOs:

leb D/bn
D/ :( b ﬁ&%?), S14
= \pi Dl S
leb D/bn
/ _ BA BA
D= (D4 i) 519

Thus, the bond order matrix in the full MBFO basis is:

DUDK - DIEDR DUDRLDHDE) (o

A TN r
B = DlsDhe = (DDA L Diind DAL + DALDAL
Since B/, is already diagonal and all bond orders between the nonbonding MBFOs are zero,
we have

D3D3} + DDy = A, (817)
D}3D74 + D3 Dig =0, (S18)
D737, + DpDi; =0, (S19)
D}z D7s + Dz = 0, (S20)

where A is a diagonal matrix, whose diagonal entries consist, and consist only all positive
eigenvalues of B/;.
Before proceeding with the proof, we introduce the following lemma.
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Lemma: For any matrices A and B of the same size, if
ATA +B'B =0, (S21)

then A =B = 0.

Here is the proof. As demonstrated in section 2.1, the product ATA is positive semidef-
inite Hermitian. This means that ATA can be diagonalized by a unitary matrix U to Ay,
whose diagonal entries are all nonnegative. Now, we perform a unitary transformation with
U to both sides of eqn (S21), as follows: UTATAU + U'B'BU = U'0U, which leads to
(BU)'(BU) = —A4. As we know, (BU)T(BU) is also positive semidefinite, and thus the
left-hand side has all nonnegative diagonal entries. On the other hand, the right-hand side
has all nonpositive diagonal entries, for all diagonal entries of A4 are nonnegative. Conse-
quently, the only possibility is that (BU)"(BU) = A4 = 0. Hence, ATA = UA,U' = 0.
If we suppose (A);; = a;j, then (ATA);; = >, ajajx = 0. Just by looking at the diagonal
entries, (ATA); = >, |ai|* = 0, we know that a;, = 0 for all (i, k), i.e., A = 0. Following
the same procedure, we can prove that B = 0. Q.E.D.

By applying this lemma to eqn (S18), and noticing that D’2% = (D£%)" and D75 =
(D) we obtain

Djiz = Dgj = 0, (S22)
D — DIt = Q. (S23)

By expanding Bf, in the same manner as we expand B/ in eqn (S16), we can similarly
prove that

D}i = Db = 0. (S24)

As a result, according to eqns (S14) and (S15), the interfragmental blocks of the density
matrix in the full MBFO basis become

, (DR O
DA% - ( 0 0/’ <S25)
D/bb 0
o BA
D3, = ( 0 0) . (S26)
Therefore, the density matrix in the full MBFO basis is
A 0 D0
D,, D 0 A 0 0
D — AA Pas ) _ AA . q27
(b pia) = o2 " Ak o 520
0 0 0 AL}

By rearranging the subblocks in the order of the bonding MBFOs followed by the nonbonding
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ones, we finally obtain:

, (D 0
D' = ( 0 f)) , (S28)
where the submatrix associated with the bonding MBFOs, f), is defined as
- Abb D/bb)
D= Ad - TEAB ) S29
(bii Xt 52

and that associated with the nonbonding MBFOs, D, is defined as

_ /A0
D:(O A%%). (S30)

Furthermore, according to eqns (S16)—(S20), the whole bond order matrix in the full
MBFO basis is reduced to

, (DD 0\ (A 0

indicating that all positive eigenvalues of the bond order matrix of the whole system can
be fully derived from the density submatrix in terms of the bonding MBFOs. We can thus
define the bond order matrix in terms of only the bonding MBFOs as

Bus = DD — A (S32)

so that
Bz 0O
B\ :( SB 0). (S33)

Similar relationship can be obtained for B}, and BB 4. Moreover, since there is a one-
to-one correspondence between all positive eigenvalues of Byg and those of Bgy, Byg and
B34 must be the same diagonal matrix:

Bus = By = A. (S34)
2.3 Density matrix D in the nonbonding MBFO basis

Using eqn (528), it is easy to verify that the idempotent property also holds for D and D:

oD = D?, (S35)
2D = D (S36)

On the other hand, since D is a diagonal matrix (see eqn (S30)), let {);} denotes its diagonal
entries. Then, from eqn (S36) we get A\;(A\; — 2) = 0, which means that either \; = 0 or
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\i = 2, and thus proves that the diagonal matrix D only have entries of either 2 or 0.

2.4 Density matrix D in the bonding MBFO basis
2.4.1 Separation of nondegenerate and degenerate groups

Among all 2m bonding MBFOs, we suppose that there are v groups of degenerate bonding
MBFOs, each of which is associated with m{ identical eigenvalues of Byg (mj > 2 and
k=1,2,...,7). We put all the rest m”" nondegenerate bonding MBFOs together, which are
associated with m” eigenvalues that are all distinct from one another. For convenience, we
arrange all bonding MBFO basis functions in the following order: the nondegenerate group
and the degenerate groups of bonding MBFOs of A, followed by the nondegenerate group
and the degenerate groups of bonding MBFOs of B. Accordingly, the bond order matrix in
this basis, which is diagonalized, takes the following form:

Al}l% _ Aﬁ[g
A BT
Bug = Bgy = A = B3l (S37)

Al BiL

where Bf is the eigenvalue (bond order) corresponding to the kth degenerate group.

As proved in section 2.1, all intrafragmental blocks of the density matrix in the MBFO
basis are diagonal, and thus so are the intrafragmental blocks of D, which take the following
form:

Al
Ajl
Dy = A%, (S38)
A%
and
Al
Ay
Dgg = A%, (S39)
A%

where the symbol A denotes a diagonal matrix; the superscripts h and g indicate, respec-
tively, the nondegenerate group and the kth degenerate group of bonding MBFOs.

For the diagonal blocks corresponding to degenerate groups, Ai’{“ﬂ and ]X%’“B, they have
identical diagonal entries, which can be proved as follows. According to eqns (S4) and (S28),
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we know that Byg = 2D 44 — D2 ,. Then, from eqns (S37) and (S38), we get
BYL = 2R%, — (R%,)* (340)
This equation infers that all diagonal entries of AnglkA are the same and we thus have
A%, = n%1, (S41)

where nf is constant for the same degenerate group g, and has the meaning of the occpancy
of an MBFO. Similar results can be obtained for B’s degenerate bonding MBFOs:

A%y =l (S42)

Now, let’s examine the interfragmental blocks, D a3 and Dgg 4. We first demonstrate that
both matrices are unitarily diagonalizable. According to eqn (S34), DsDga = DygDas,
namely, D 45 and Dg 4 commute with each other. Since Dg 4 = DLB, it is evident that
D ABDTAQ =D ABD As, meaning that D 48 and DB 4 are normal matrices,® and thus are
diagonalizable by a unitary matrix.

Furthermore, we show that D e and ]33 4 are both invertible. For the convenience of
discussion, we rewrite eqn (S34) as two separate equations:

Dy3Dss = A, (S43)
DgsDaz = A. (S44)

Since the diagonal entries of the diagonal matrix A, {5\1}, are all positive eigenvalues associ-
ated with the bonding MBFOs, we can define A~! and A2 as the diagonal matrices whose

diagonal entries are {)\ 1 and {)\ 2} respectively. By left and right multlplymg both sides
of eqn (S43) by A3 and usmg that Dyg = D%A, we obtain (DBAA ) (DBAA ) I,
which means that U = DB AA > s a unitary matrlx Hence, Dg 4= = UA: is invertible, and
its inverse is D3} = A~ 2UN = A~ (DBAA = A~ 1DA3. Similarly, we can prove that
D 45 is invertible and its inverse is DX an = A_lf)g a.

Next, we want to prove that both D e and Dg 4 commute with the dlagonal matrix A.
By right multiplying both sides of eqn (S43) by DB;, we get Dy = ADB 4- Meanwhile, we
can also left multiply both sides of eqn (S44) by D; ) and obtain Dgg = D3 A. Therefore,
we have ADBi = D73 AA By left and rlght multlplylng both sides by Daa, we get DgyA =
ADy,. In similar way, we can prove DasA = AD 3.

Supposmg that the matrix elements of D45 are denoted by (D AB)ij = @4, it 1s easy to
show that (DasAus)i; = Mjai; and (AxsDaz)ij = Niaij. As DazAaz = AgpDap, we know
that \ja;; = Aa;; for all (4,7). Consequently, for all (7,7) pairs with ¢ # j and A\; # A,
we must have a;; = a;; = 0. This indicates that the off-diagonal element of D 48 vanishes
if it is associated with two bonding MBFOs that correspond to distinct eigenvalues of the
bond order matrix. As a result, for Dyg, the off-diagonal subblocks between two different
degenerate groups, g and g, (k # 1), and those between the nondegenerate group and any
degenerate group, are all zeros. Moreover, since all corresponding eigenvalues are distinct
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within the nondegenerate group, the entire nondegenerate subblock is diagonal. Therefore,
D5 takes the following form:

Al
Dl
Dy = D%y . (S45)
Dy
Likewise, it can be demonstrated that
Al
] Dy,
Dy = D%y . (S46)
D3y

Finally, by placing together the subblocks corresponding to the same degenerate or non-
degenerate group in eqns (S38), (S39), (S45) and (S46), we obtain D in the following form:

f)h
D%

Do , (547)

wh
Il

Do
where the subblock associated with the nondegenerate group, h, is
~ AL, Al
Dh — AA TTAB S48
(3 &8) >
and the subblock associated with the kth degenerate group, g, is
- Agk f)gk n%*1 D%
D% = [ SAA TAB ) — A AB S49
ok &) - (55, o). o)

where nf and nf are single numbers, corresponding to the natural occupancy of a bonding
MBFO in group gx. Note that Al Al Al Al A%, and A%, are all diagonal matrices,
while D% A and DB ", are not necessarily diagonal. The procedure of diagonalizing D 5 and
Dg"A is provided in the next subsection. In addition, eqn (S49) also indicates that all bondmg
MBFOs of A (or of B) that are degenerate in bond order have the same occupancy.
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2.4.2 Diagonalization of ]35{“3 and f)%kA

Given a degenerate group g of bonding MBFOs, let’s consider a unitary matrix Qi{“ that
transforms the m{ degenerate bonding MBFOs of A, and a unitary matrix ng that trans-

forms the mj degenerate bonding MBFOs of B. Thus, the total transformation matrix for
all 2mj bonding MBFOs of A and B is written as

Ik ~.‘Zlk 0
@ = (3 ) (550)

Hence, according to eqns (S50) and (S49), the transformed density matrix is

_ L nI 1 ngTng ng
D% = QDR Qo = (Qg’“T]:;l%’“A " s (Sh1)

By comparing it with eqn (S49), we can see that the diagonal blocks of D9 remain unaltered
after the basis transformation by Q9.

Now, we show that the off-diagonal blocks of D%’ are diagonalized if the unitary matrices
Qi’f and Q%k fullfil the following relationship:

- 1 -~ -
4 = ——Dg, Q% (52)

VB

With the transformation matrices given by this equation, the off-diagonal block D% g is:

Di{% _ ngTDilkB % — ngTng D%kA i{c _ (QQICTB%B ilk (S53)

\/BT J_

Notice that the bond order matrix Bfﬁ{%, which corresponds to the degenerate group g, is
already diagonalized with identical diagonal elements (see eqn (S37)):

BY%, = A%, = BJL (S54)
Thus, from eqn (S53), we know that Dg 45 1s diagonal with identical diagonal elements:

D% = /BIL (S55)

Likewise, we can show that Dg 5y 1s also diagonal with identical diagonal elements:

D%k/,{_ngTDBA A = (\/FD%ICA A) D%kfl A RV I (856)
k

In addition, it is easy to check that the corresponding bond order matrices, Bi{% and B%’;’l,
are unaltered after the basis transformation (cf. eqn (S54)): B%; = D%, D%, = BJI and
o !/ ™~ 7 1N /!

By, ~ DYDY, ~ BiI

S12



To diagonalize the off-diagonal blocks of D9, as we can see, there exist an infinite number
of choices of unitary matrices Q% and Q, as long as eqn (S52) is fullfilled. A simple
straightforward option is to just choose

Ik
A_I7

o = =Dl (550
v By
Then, the transformed density matrix for the degenerate group g; becomes

- a1 /Bl
Do — [ A k)
(w /BT %1 ) (558)

2.4.3 Final form of D

To sum up the results of the preceding two subsections, the density matrix in terms of the
2m bonding MBFOs, D, can be eventually reduced to the following form:

n{{ vV Bl
’I’Lél vV B2

lwhl
I

i VBn (S59)

where n' and n? are the occupancy of 64 and 67,
between 67 and 62.

We can further show that

respectively, and B; the bond order

nt +nl =2, (S60)
P (S61)

The proof is as follows. _
According to eqn (S59), D has the form:

=~ ]\AA Ams)
D=|"= - , S62
<A3A Agps (562)

where all four subblocks are an m x m diagonal matrix, and (1~X AA)ii = nfl, (]\ggg;)ii =n?

7

(A‘A-B)Z'Z' = (ABA)M- = +/B; (i = 1,2,...,m). Therefore, eqn (S35) leads to the following
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equations:

Afp + Ay = 284, (63)
Al + Aly = 2Asp3, (S64)
(Apa + App — 21)A 45 = 0. (S65)

Since the product of two diagonal matrices is just the multiplication of their diagonal entries,
eqn (S65) is thus equivalent to (nf +n? —2)y/B; = 0. As /B; > 0 for all bonding MBFOs,
we then arrive at eqn (S60): nft +n? = 2.

On the other hand, by summing up eqns (S63) and (S64), we obtain A% + A% +2A%, =
2(Ay + As), and hence ()% + (n?)? +2B; = 2(n?* +n?). Combining it with eqn (S60), we

thus obtain eqn (S61): B; = nfin}.

3 (2
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3 Determination of MBO coefficients

Following the discussion in the manuscript, a pair of MBFOs, 9~ZA and é?, form a bonding
MBO and an antibonding MBO:

This transformation can be represented by the following matrix:

- (A, A,
(b A (56

where A, and A, are m x m diagonal matrices with (A,)y = a; and (Ap)y = b; (i =
1,2,...,m). Since both MBFOs and MBOs are orthonormal bases, the transformation
matrix T should be unitary, which requires that A2 + A2 = I. Accordingly, from eqns (S62)
and (S68), the density matrix in the bonding MBO basis becomes

DMBEO — TIDT
_ ( A2App+ AfAps + 200 A A s AuAp(Apn — Agp) — (A2 — A_g)]\w>
AAy(Agq — Apg) — (A2 — A?) Ay AZApp + A2 Agp — 2A ApA '
(S69)
Following our chemical intuition, in ground state the occupancies should be maximized for
the bonding MBOs and minimized for the antibonding ones. This means that we are looking

for an optimal set of coefficients {a;} and {b;} so that DMB© is diagonalized. Consequently,
the required set of {a;} and {b;} must fulfill that

AdAy(Aps — Aps) — (A2 — A Az = 0, (S70)
which leads to

abi(nt —n?) — (a2 —b2)\/ntnP =0. (i=1,2,...,m) (S71)
Using eqns (S60) and (S71) with the normalization condition, a? + b? = 1, and noticing that
a; by, nt, n? are all positive, we obtain

7

nf
a; = a5 0
2
B
b = "7 (S72)
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With this result, it is easy to verify (using eqn (S69)) that

mpo _ (21 O
o — (T 0). (573)

where matrices I and 0 are both of dimension m X m.
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4 Derivation of the expressions of MBO bond energy
As defined in the manuscript, the bond energy of the i-th bonding MBO, 2;, is

AFE; = 2(ef — 189, (S74)

)

where €/ is the energy of the electron-withdrawing MBFO (i.e., assuming that €' < €?) and
eMBO s the energy of MBO, €, which is evaluated as

R n ny

PO = (Qi|FIQ)) = The + TP + VBF, (875)
Plugging eqn (S75) into eqn (S74), we obtain

AFE;, = (2 — nf‘)ef — n?e? — 2/ B;F;. (876>

Since we have assumed that /! < €7, there are normally more electrons populated in fragment
A than in fragment B, namely, n* > n?. Hence, n! =1+ 6; and n? =1 — §;. As a result,
eqn (S76) becomes

= (6, — 1)A; — 2¢/B,F,. (S77)

Noticing that B; = 1 — 67, we see from eqn (S77) that AE; is a function of ¢;. Thus, there
exist an optimal value of §; = 97 P! that determines the maximum possible value of AF;,
given that A; and F; are fixed.

Let 6; = cos0,v/B; = sinf (0 < 0 < 7/2) and A% /r = cosp, —2F;/r = sinp (0 < ¢ <
7/2), where r = \/A;? + 4F;?. Then, eqn (S77) is transformed to

AE; = AP? +4F?cos(f — o) — A,

Evidently, AE; takes the maximum value of /A% + 4F;* — A; when cos(f — ) = 1. Since
both 6 and ¢ lie between 0 and 7/2, we know that § = ¢ gives the maximum AFE;. Therefore,
the optimal values of §; and B; are

A
6P = cosh = cos p = ————, S78
B = sin? 6 = sin? ¢ = A (S79)
' A2 4 4F?
Let
A
_ A S80
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then both 6" and B{™" are exclusively a function of a:

gort— & S81

’ 1+a? (581)
1

P = : S82

’ 1+ a2 (882)

Consequently, the MBO bond energy AFE;, as variationally determined by 5fpt, is then

AE; = \/A2 4+ 4F2 — A, (S83)

In the case of MBOs with strong covalent character, §; =~ 0, B; =~ 1 and thus a &~ 0 and
A; < |F;]. Accordingly, eqn (S83) can be approximated as

1
AE; =2|F|(V1+a? — a) = 2|F|(1 + 5042 —a)
A,
%2[5\(1—@):205]—7). (984)
On the other hand, for highly polarized MBOs, ; ~ 1, B; ~ 0 and thus 1/a ~ 0 and
A; > |F;|. Hence, we have the following approximation for eqn (S83):

1 A; F?

AL 2 _ 1)~ AL )= _9li
A = A(V1+1/a =) A1+ 55— 1) = N (S85)

Meanwhile, the charge transfer from the donor MBFO (67) to the acceptor MBFO (67) can
be estimated as (note that 1/« & 0):

1 FiN\2
g =n' 5, — 5 ( Az-) (S86)

Now, by including the second order term in the Taylor expansion of y/1+ 1/a? in eqn
(S85), we have

AB = AT TR —1) e A1+ —— = L = Big L

202 8ot 402 202
F2 F2
= (2 Ag) - = ni ot (387)

S18



5 MBFO analysis for H-bond complexes at the M 06 /def2-
TZVPP level

Fig. S1 shows the results of the MBFO analysis for some H-bond complexes at the M06/def2-
TZVPP level. Comparing this figure with Fig. 8 in the manuscript, we can see that the
results of MBFO analysis at both the M06/def2-TZVPP and B3LYP /aug-cc-pvDZ levels
give quite similar MBFO orbital shapes, decomposed bond orders and MBO bond energies.

B, =0012 B,=0.010
AE| =2.5 kcal/mol AE; = 1.6 kcal/mol
(@) 120 + oM (b) 652°C + o5Hs

B, =0.037 B; =0405
AE| =7.5 kcal/mol AE; =157.5 kcal/mol
() OBH: 4+ 6110 @ 67 + 6F

Figure S1. Results of the MBFO analysis at the M06/def2-TZVPP level of theory.
Interaction between the principal MBFO pairs (64 and 67) in H-bond complexes, (a)
H,CO---HNH,, (c¢) HsBH™ ---HOH and (d) F~HF. The interaction between the second
principal MBFO pairs (63 and 63) is also shown for complex HoCO- - - HNH; (panel b). In
each case, the positive and negative phases of donor MBFO are indicated by red and green
colors, respectively, while the corresponding color codes for acceptor MBFO are orange and
blue, respectively. All orbitals are plotted with an isovalue of 0.03. The corresponding bond
order (B;) and bond energy (AE;) are also given.
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6 Orbital interaction diagrams for MgCp, and BaCp,

The orbital interaction diagrams for MgCp, and BaCp, are presented in Figure S2. For
clarity, we only show the most important MBOs and the corresponding MBFOs with a bond
order greater than 0.03.
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Figure S2. Orbital interaction diagram for (a) MgCps and (b) BaCps. For clarity, only
MBOs and the corresponding MBFOs with a bond order greater than 0.03 are shown. Filled
energy levels are indicated in dark blue with two yellow triangles representing an electron
pair, and empty levels are distinguished by light blue color. The MBFOs and MBOs are
labeled by their symmetry notation, which, in the case of antibonding MBOs; is followed by
an asterisk. The oxidation state +2 of the metal, as denoted by Mg?* or Ba?*, has been
determined by filling electrons into lowest possible energy MBFOs.
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7 Orbital deformation for Cp~ rings in MCp, complex
with respect to the isolated Cp~ rings

Figure S3 plots the difference in wave function between the MBFO of Cp~ rings in MCps
complex and the corresponding MO of the isolated Cp~ rings, for the three leading metal—
ligand bonding interactions in FeCpy, BeCpy, and CaCps. As we can see, all three leading
MBEFOs of Cp~ rings in FeCpy have undergone a substantial deformation. For BeCps, only
the leading MBFO (A]) of Cp~ rings shows a considerable deformation. As to CaCp,, the
deformation of MBFOs of Cp~ rings is much less significant.

—E] — 8
(0.998) . 352)
(a) FeCp,

! ! Al : — E, — :
i ©. 339) (0.084)

(b) BeCp;

ﬁwﬁwﬁb

<—E1—>

(0.127) (0.107)

(c) CaCp;

Figure S3. The difference in wave function between the MBFO of Cp~ rings in MCp, and
the corresponding MO of the isolated Cp~ rings, for (a) FeCps, (b) BeCps and (¢) CaCps.
Only the MBFOs corresponding to the three leading metal-ligand interactions are shown
(with bond orders given in parentheses). All isosurfaces are plotted with an isovalue of 0.05.
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