# SUPPORTING INFORMATION

FOR THE PAPER: "A THERMODYNAMICALLY CONSISTENT PHASE DIAGRAM OF A TRIMORPHIC PHARMACEUTICAL, L-TYROSINE ETHYL ESTER, BASED ON LIMITED EXPERIMENTAL DATA"

By Béatrice Nicolaï, Maria Barrio, Pol Lloveras, Alain Polian, Jean-Paul Itié, Josep-Lluis Tamarit, Ivo B. Rietveld

## **UNIT CELL PARAMETERS**

Table S1. Fitted unit-cell parameters of forms I, II, and III as a function of pressure and temperature

| Form I  |        |        |       |                     |
|---------|--------|--------|-------|---------------------|
| P (MPa) | a (Å)  | b (Å)  | c (Å) | V (Å <sup>3</sup> ) |
| 250 K   |        |        |       |                     |
| 0       | 12.734 | 16.954 | 5.274 | 1139                |
| 0       | 12.728 | 16.950 | 5.272 | 1137                |
| 80      | 12.703 | 16.963 | 5.273 | 1136                |
| 190     | 12.656 | 16.944 | 5.248 | 1126                |
| 293 K   |        |        |       |                     |
| CIF     | 12.788 | 16.982 | 5.279 | 1146                |
| 0       | 12.762 | 16.971 | 5.282 | 1144                |
| 80      | 12.741 | 16.975 | 5.259 | 1137                |
| 270     | 12.657 | 16.911 | 5.204 | 1114                |
| 303 K   |        | _      | _     |                     |
| 160     | 12.708 | 16.978 | 5.234 | 1129                |
| 323 K   |        |        |       |                     |
| 0       | 12.837 | 17.030 | 5.324 | 1164                |
| 200     | 12.720 | 16.959 | 5.234 | 1129                |
| 0       | 12.830 | 17.023 | 5.331 | 1164                |
| 337 K   |        | -      | -     |                     |
| 0       | 12.853 | 17.026 | 5.332 | 1167                |
| 200     | 12.747 | 16.961 | 5.252 | 1136                |
| 300     | 12.674 | 16.903 | 5.204 | 1115                |
| 400     | 12.594 | 16.800 | 5.184 | 1097                |
| 60      | 12.812 | 17.010 | 5.314 | 1158                |
| 360 K   |        |        |       |                     |
| 0       | 12.969 | 17.042 | 5.340 | 1171                |

| Form II       |                          |           |                |       |
|---------------|--------------------------|-----------|----------------|-------|
| 200 K         |                          | -         | -              | -     |
| 0             | 12.658                   | 14.624    | 5.770          | 1068  |
| 100           | 12.758                   | 14.487    | 5.695          | 1053  |
| 270           | 12.737                   | 14.455    | 5.678          | 1046  |
| 500           | 12.695                   | 14.403    | 5.655          | 1034  |
| 850           | 12.656                   | 14.360    | 5.628          | 1023  |
| 900           | 12.648                   | 14.341    | 5.619          | 1019  |
| 1080          | 12.629                   | 14.321    | 5.610          | 1015  |
| 2000          | 12.567                   | 14.216    | 5.543          | 990   |
| 2200          | 12.519                   | 14.167    | 5.513          | 978   |
| 250 K         | 1                        |           | •              | 1     |
| 0             | 12.788                   | 14.670    | 5.785          | 1085  |
| 110           | 12.763                   | 14.556    | 5.760          | 1070  |
| 220           | 12.720                   | 14.530    | 5.738          | 1061  |
| 330           | 12.688                   | 14.504    | 5.714          | 1052  |
| 500           | 12.668                   | 14.475    | 5.687          | 1043  |
| 800           | 12.648                   | 14.433    | 5.662          | 1033  |
| 1750          | 12.580                   | 14.215    | 5.580          | 998   |
| 293 K         | 121000                   | 11210     |                | ,,,,, |
| 0             | 12,754                   | 14,749    | 5.802          | 1092  |
| 0             | 12 771                   | 14 739    | 5 803          | 1092  |
| 0             | 12.790                   | 14 712    | 5 805          | 1092  |
| 90            | 12.790                   | 14 730    | 5 779          | 1085  |
| 190           | 12.7 13                  | 14 689    | 5 747          | 1073  |
| 300           | 12.711                   | 14 641    | 5 714          | 1061  |
| 400           | 12.001                   | 14 598    | 5 682          | 1049  |
| 560           | 12.017                   | 14 554    | 5 658          | 1019  |
| 830           | 12.022                   | 14.482    | 5 612          | 1022  |
| 1200          | 12.570                   | 14.402    | 5 580          | 1022  |
| 2400          | 12.552                   | 14.181    | 5 472          | 966   |
| 4000          | 12.445                   | 12.01     | 5 303          | 900   |
| Form III      | 12.720                   | 15.014    | 5.505          | 710   |
| 250 K         |                          |           |                |       |
| 230 K         | 12 601                   | 16.015    | 5 172          | 1044  |
| 600           | 12.001<br>12 57 <i>A</i> | 16 115    | 5.172<br>5.147 | 1044  |
| 1000          | 12.374                   | 16.070    | 5.147          | 1045  |
| 2100          | 12.344                   | 15.620    | J.131<br>4 079 | 1035  |
| 2200          | 12.721                   | 15.030    | 4.970          | 990   |
| 3300          | 12.330                   | 15.571    | 4.911          | 940   |
| 202 K         | 12.300                   | 13.147    | 4.041          | 900   |
| <b>450</b>    | 12642                    | 16.005    | 5 162          | 1044  |
| 450           | 12.042                   |           | 5.102          | 1044  |
|               |                          | 15.9/1    | 5.122          | 1031  |
|               | 12.53/                   |           | 5.074          | 1003  |
| 2100<br>202 V | 12.409                   | 15./5/    | 5.033          | 989   |
| 303 K         | 10 (77                   | 1(11)     | <b>F</b> 226   | 10(0  |
| 440           | 12.677                   | 16.110    | 5.236          | 1069  |
| 323 K         | 10 4 10                  | 4 6 9 5 2 |                | 4070  |
| 580           | 12.649                   | 16.060    | 5.207          | 1058  |

| 720   | 12.641 | 16.034 | 5.184 | 1051 |
|-------|--------|--------|-------|------|
| 960   | 12.607 | 15.972 | 5.143 | 1035 |
| 1500  | 12.538 | 15.846 | 5.074 | 1008 |
| 2200  | 12477  | 15.721 | 5.018 | 984  |
| 2500  | 12.451 | 15.671 | 4.997 | 975  |
| 2900  | 12.411 | 15.607 | 4.972 | 963  |
| 3900  | 12.309 | 15.442 | 4.907 | 933  |
| 337 K |        |        |       |      |
| 400   | 12.672 | 16.116 | 5.261 | 1074 |
| 500   | 12.660 | 16.078 | 5.225 | 1064 |
| 600   | 12.638 | 16.033 | 5.193 | 1052 |
| 750   | 12.613 | 15.999 | 5.164 | 1042 |
| 4380  | 12.170 | 15.281 | 4.866 | 905  |

RAMAN DATA



**Figure S1.** Raman data of form I from 0 to 1200 cm<sup>-1</sup> at 293 K under pressure. Form I changes into form III between 0.2 and 0.43 GPa. Once returned to 0.21 GPa from 1.89 GPa form I is recovered (D: decompression).



**Figure S2.** Raman data of form II from 0 to 1200 cm<sup>-1</sup> at 293 K under pressure. Form II remains unchanged.



**Figure S3.** Raman data from 200 to 1300 cm<sup>-1</sup> at 293 K under pressure. Form I changes into form III between 0.43 and 0.48 GPa (see peak at 800 cm<sup>-1</sup>), D: decompression.



**Figure S4.** Raman data from 200 to 1300 cm<sup>-1</sup> at 310 K under pressure. Form I changes into form III between 0.29 and 0.38 GPa (see peaks at 800 and 950 cm<sup>-1</sup>). Releasing the pressure form I is recovered between 0.23 and 0.12 GPa, D: decompression.



**Figure S5.** Raman data from 200 to 1300 cm<sup>-1</sup> at 320 K under pressure. Form I changes into form III between 0.28 and 0.37 GPa (see peaks at 800 and 950 cm<sup>-1</sup>), D: decompression.



**Figure S6.** Raman data from 200 to 1300 cm<sup>-1</sup> at 340 K under pressure. Form I changes into form III between 0.38 and 0.46 GPa (see peak at 800 cm<sup>-1</sup>) and releasing the pressure form III changes back into form I between 0.41 and 0.27 GPa, D: decompression.

Table S2. Pressures and temperatures at which a different polymorphappears going up in pressure (form III) and going down in pressure (formI) in the diamond anvil cell (Synchrotron and Raman experiments)

| Т   | P I | P III | Source      |
|-----|-----|-------|-------------|
| 250 | 190 | 300   | Synchrotron |
| 293 | 200 | 430   | Raman       |
| 293 |     | 480   | Raman       |
| 293 | 270 | 450   | Synchrotron |
| 303 | 160 | 440   | Synchrotron |
| 310 | 120 | 380   | Raman       |
| 320 |     | 370   | Raman       |
| 323 | 350 | 580   | Synchrotron |
| 337 | 400 | 500   | Synchrotron |
| 340 | 410 | 460   | Raman       |

Table S3. Observed Raman wavenumbers (cm<sup>-1</sup>) compared with experimental absorption wavenumbers (cm<sup>-1</sup>) in infrared<sup>a</sup> for L -tyrosine ethyl ester (L-TEE) polymorphs I and II, L -tyrosine methyl ester (L-TME), L -tyrosine propyl ester (L-TPE), and L -tyrosine butyl ester (L-TBE)<sup>b</sup>

|              | L-TME   | l -TEE I |       | l -TEE II |       | l -TPE  | l -TBE |
|--------------|---------|----------|-------|-----------|-------|---------|--------|
|              | IR      | IR       | Raman | IR        | Raman | IR      | IR     |
|              |         |          |       | 3348 sh   | 3350  |         |        |
| 0-H stretch  | 3353 S  | 3327 S   | 3340  | 3326 S    |       | 3344 S  | 3336 S |
| (alconol)    |         |          |       | 3298 sh   | 3300  |         |        |
| N-H stretch  | 3299 m  | 3269 m   | 3270  | 3267 m    |       | 3291 m  | 3287 m |
|              |         | 3160 w   |       | 3159 w    |       | 3191 vw | 3191 w |
| C-H stretch  |         |          | 3060  |           | 3070  |         |        |
| (aromatic)   | 3012 w  |          | 3030  | 3020 w    |       | 2972 w  |        |
| ſ            | 2957 w  | 2994 w   | 2960  | 2940 w    | 2950  | 2954 w  | 2955 S |
|              | 2932 w  | 2945 w   | 2930  | 2904 vw   | 2930  |         | 2927 m |
|              | 2895 vw | 2904 w   |       |           |       | 2909 w  | 2904 m |
| C-H stretch  |         |          |       |           |       |         |        |
|              |         |          |       |           | 2880  | 2851 vw | 2869 m |
|              |         |          |       |           |       |         |        |
| l            |         |          |       | 2792 w    |       |         |        |
|              | 2810 vw |          |       |           |       | 2801 vw | 2797 w |
| overtones    | 2757 vw |          |       | 2748 w    |       | 2761 vw | 2743 w |
| and          | 2676 w  | 2676 w   |       | 2680 w    |       | 2685 m  | 2676 m |
| combinations | 2586 w  | 2498 w   |       | 2591 w    |       | 2589 m  | 2589 m |
|              |         |          |       | 2517 w    |       | 2515 m  | 2515 m |
|              |         |          |       | 2345 w    |       | 2363 m  |        |
| overtones    | 1893 w  |          |       |           |       |         |        |
|              | 1837 w  | 1881 w   |       | 1879 w    |       |         | 1888 w |
| C=O stretch  |         |          |       |           |       |         |        |

| (ester)             | 1740 vS | 1727 vS | 1730 | 1731 vS | 1740 | 1721 vS | 1720 vS |
|---------------------|---------|---------|------|---------|------|---------|---------|
|                     | 1703 w  |         |      |         |      |         |         |
|                     |         |         |      |         |      |         |         |
|                     |         |         |      |         |      |         |         |
|                     |         |         |      |         |      |         |         |
|                     |         |         |      |         |      |         |         |
| C=C stretch         |         |         |      |         |      |         |         |
| N III I             | 1669 sh |         |      |         |      | 1640 vw | 1636 w  |
| N-H bend            | 1611 m  |         | 1615 |         | 1615 | 1614 S  | 1611 S  |
|                     |         |         |      |         |      |         |         |
| C-C stretch         | 1595 S  | 1598 S  |      | 1592 S  | 1595 | 1597 S  | 1593 S  |
| (aromato)           |         | 1584 S  |      |         |      |         |         |
| C II handing        | 1513 S  | 1514 S  |      | 1514 S  |      | 1516 vS | 1514 vS |
| C-H bending         | 10100   | 10110   |      | 10110   |      | 1010 10 | 101110  |
|                     |         |         |      |         |      |         |         |
| O-H bending         | 1479 S  | 1454 S  | 1450 | 1458 S  | 1455 | 1462 S  | 1459 vS |
|                     | 1442 S  | 1439sh  |      | 1444sh  | 1445 | 1444 sh |         |
|                     | 1435 S  | 1419 m  | 1420 | 1419 w  |      | 1396 S  | 1387 S  |
|                     |         |         |      |         |      |         |         |
|                     | 1395 sh |         |      |         |      |         |         |
| C-H rock            | 1379 m  | 1382 m  |      | 1382 m  |      | 1379 m  | 1338 S  |
|                     | 1352 m  |         |      | 1365 w  | 1350 | 1347 m  |         |
|                     |         |         |      |         |      | 1337 m  |         |
|                     | 1314 vw | 1311 w  |      | 1312 m  |      | 1298 w  |         |
|                     | 1302 m  |         |      | 1298 m  | 1300 |         | 1296 m  |
| C-O stretch         |         |         | 1265 |         | 1270 |         |         |
| (alcohol)           | 1256 vS | 1243 vS |      | 1251 vS | 1250 | 1260 vS | 1255 vS |
|                     | 1220 S  | 1209 m  |      | 1220 S  |      | 1189 vS | 1190 vS |
| C-O stretch (ester) | 1195 S  |         | 1205 |         | 1205 |         |         |
|                     | 1170 vS | 1172 vS | 1175 | 1170 vS | 1172 | 1173 vS | 1171 vS |
| C-O stretch (ester) | 1144 vS |         |      | 1142 m  | 1145 | 1143 S  | 1145 S  |
|                     | 1113 m  | 1115 m  | 1120 | 1115 m  |      |         | 1124 m  |

| C-N stretch | 1102 S  | 1100 m  | 1100 | 1100 m  | 1100 | 1095 S  | 1094 S  |
|-------------|---------|---------|------|---------|------|---------|---------|
|             |         | 1058 S  |      | 1061 m  |      | 1055 sh | 1055 m  |
|             |         |         |      |         |      |         |         |
|             | 1017 vS | 1028 vS |      | 1023 vS |      | 1032 vS | 1035 vS |
|             | 988 S   |         |      | 972 m   |      | 1010sh  | 1003 vw |
|             | 957 m   | 954 w   |      | 954 w   |      | 959 m   | 952 w   |
|             | 950 m   |         |      |         |      | 933 m   | 932 m   |
|             |         |         |      |         |      |         |         |
| N-H wag     | 907 m   | 920 m   |      | 907 m   |      | 910 vw  |         |
|             | 872 m   | 865 m   |      | 865 m   |      | 888 m   | 878 m   |
|             |         |         |      |         |      |         |         |
|             |         |         |      | 846 S   | 855  | 848 m   | 867 m   |
|             | 836 vS  | 818 vS  |      | 815 vS  | 825  | 818 vS  | 820 vS  |
| C-H bend    | 794 m   | 780 m   |      | 782 m   | 785  | 780 S   | 778 S   |
| (aromatic)  |         | 752 m   |      | 753 m   |      | 748 S   | 749 m   |
| C-H rock    | 732 m   |         |      | 731 m   |      |         | 737 m   |
|             | 719 m   | 715 w   | 715  | 715 w   |      | 713 vw  | 713 vw  |
|             |         | 684 m   |      | 684 vw  |      | 682 m   | 679 m   |
|             | 646 w   |         |      | 671 vw  |      |         |         |
|             | 636 m   | 640 m   | 645  | 640 m   | 645  | 640 m   | 640 m   |
|             |         |         |      | 621 sh  |      |         |         |
|             | 572 S   | 558 m   | 560  | 572 m   |      |         |         |
|             |         |         | 520  |         |      |         |         |
|             |         |         |      |         |      |         |         |
|             |         |         | 375  |         |      |         |         |
|             |         |         |      |         | 320  |         |         |
|             |         |         | 100  |         | 130  |         |         |
|             |         |         |      |         | 95   |         |         |
|             |         |         | 80   |         |      |         |         |

|    | 60 |  |
|----|----|--|
| 35 | 35 |  |
| 20 | 22 |  |

<sup>a</sup> Obtained by FTIR, Perkin Elmer Septum spectrometer 1000

<sup>b</sup> S: strong, vS: very strong, m: medium, w: weak, vw: very weak, sh: shoulder

# Wavenumbers lowered by hydrogen bonding

In L-TEE polymorph I, the O-H stretch wavenumber is lower than normal, because of the infinite chain of strong hydrogen bonds, which is consistent with the isobaric thermal expansion tensors published previously.<sup>1-2</sup>

In L-TEE polymorph I, the C=O stretch wavenumber is lower than normal, because the hydrogen bonding between  $CH_3$  and O=C is stronger in polymorph I than in polymorph II (in form II C=O forms a bifurcated hydrogen bond with the  $CH_3$  et  $CH_2$  groups)

The three C-O bonds in each molecule give rise to three different C-O stretch wavenumbers. One of those remains remarkably constant around 1170 cm<sup>-1</sup>, whereas the others vary much more. The higher wavenumber is most likely the alcohol, whose value depends on hydrogen bonds of different strengths.

### **UNIT-CELL VOLUMES**

# Expressions for the unit-cell volumes (Å<sup>3</sup>) as a function of pressure (MPa) and temperature (K):

Form I (valid for P = 0 - 400 MPa)

| 337 K: | $V_{\rm I} = 1168.4(1.4) - 0.176(6) P$ | $R^2 = 0.997$ | (SI.1) |
|--------|----------------------------------------|---------------|--------|
|--------|----------------------------------------|---------------|--------|

|  | 293 K: | $V_{\rm I} = 1145.5(9) - 0.116(6) P$ | $R^2 = 0.994$ | (SI.2) |
|--|--------|--------------------------------------|---------------|--------|
|--|--------|--------------------------------------|---------------|--------|

Form II (valid for P = 0 - 850 MPa)

293 K: 
$$V_{II} = 1092.8(8) - 0.120(6) P + 4.3(6) \times 10^{-5} P^2$$
 R<sup>2</sup> = 0.998  
(SI.3)  
250 K:  $V_{II} = 1083.0(1.6) - 0.103(9) P + 3.7(9) \times 10^{-5} P^2$  R<sup>2</sup> = 0.996  
(SI.4)

200 K: 
$$V_{II} = 1067.6(1.4) - 0.088(8) P + 4.0(8) \times 10^{-5} P^2$$
 R<sup>2</sup> = 0.996 (SI.5)

Form II (800 – 4000 MPa)

All T:  $V_{\rm II} = 1053(3) - 0.0349(13) P$   $R^2 = 0.987$  (SI.6)

Form III (valid for P = 400 - 1500 MPa)

303 – 337 K:  $V_{\text{III}} = 1104(8) - 0.091(16) P + 1.9(8) \times 10^{-5} P^2$  R<sup>2</sup> = 0.984 (SI.7)

Form III (T = 250, 293 K: valid for all P and T = 303, 323, 337 K: valid for P = 1500 - 4500 MPa)

All T:  $V_{\text{III}} = 1061(2) - 0.0339(7) P$   $R^2 = 0.993$  (SI.8)

#### **TWO-PHASE EQUILIBRIA AND TRIPLE POINTS**

Topological calculations of the two-phase equilibria and triple points discussed in the text

(SI.9),

**I-II:** P = -224.6 + 0.7339 Tpublished in a previous paper.<sup>2</sup>

With triple point (eqs. SI.9 and SI.13):

I-II-V: 306 K, 0.047 Pa

**I-L:** P = -3375 + 8.96 T (SI.10), obtained through a linear fit of the melting data of form I under pressure.

With triple point (eqs. SI.10 and SI.12):

**I-L-V:** 376 K, 57 Pa

The triple point I-II-L, the intersection of SI.9 and SI.10, is:

(0.7339 - 8.96)/(-3375 + 224.6) = T = 383 K, leading to 57 MPa with eq. SI.10.

I-II-L: 383 K, 57 MPa

From a previous paper,<sup>2</sup> the following expressions for the vapor pressures of the liquid phase, form I, and form II can be obtained in the form of the Clausius-Clapeyron equation:

 $\ln(P) = -\Delta H/(RT) + B$  (SI.11), with *R* the gas constant (8.3145 J mol<sup>-1</sup> K<sup>-1</sup>) and *P* in Pa.

**L-V:**  $\ln(P) = -64.69 \times 10^3 \text{ J mol}^{-1} / (RT) + 24.72$  (SI.12)<sup>2</sup>

I-V:  $\ln(P) = -96.54 \times 10^3 \text{ J mol}^{-1} / (RT) + 34.89$  (SI.13)<sup>2</sup>

**II-V:** 
$$\ln(P) = -98.28 \times 10^3 \text{ J mol}^{-1} / (RT) + 35.58$$
 (SI.14)<sup>2</sup>

Using triple point III-L-V below, the vapor pressure of form III can be given as

**III-V:** 
$$\ln(P) = -102.98 \times 10^3 \text{ J mol}^{-1} / (RT) + 38.22$$
 (SI.15)<sup>2</sup>

The triple point II-L-V is equivalent to the melting point of form II under ordinary conditions and can be found through the intersection of the equilibrium lines L-V and II-V.

Thus T = (-64.69+98.28)/(R(35.58-24.72)) leads to a melting point of 372 K at a pressure of 44.7 Pa (triple point II-L-V).

**II-L-V:** 372 K, 44.7 Pa

The two triple points I-II-L (383 K, 57 MPa) and II-L-V (372 K, 44.7 Pa) lead to the expression for II-L

**II-L:** 
$$P = -1891 + 5.08 T$$
 (SI.16)

The expression for the two-phase equilibrium I-III was obtained by synchrotron X-ray diffraction<sup>3</sup> and improved with Raman data resulting in:

(SI.17)

**I-III:** P = -439.3 + 2.483 T

With the equation for I-II (eq. SI.9), one finds the triple point

I-II-III: 123 K, –134 MPa

Setting P = 0, one finds the triple point

I-III-V: 177 K, 0 Pa

The pressure can be verified with eq. SI.13 leading to  $4.5 \times 10^{-8}$  Pa.

With the I-II-III triple point and the Clapeyron equation, the II-III equilibrium can be calculated. The Clapeyron equation is:

$$dP/dT = \Delta S/\Delta V = \Delta H/(T\Delta V)$$
(SI.18)

Thus the entropy and volume difference for the II-III transition are needed.

 $\Delta_{II \rightarrow I}h = 8.355 \text{ J g}^{-1} \text{ at } 306 \text{ K}; \Delta_{II \rightarrow I}s = \Delta_{II \rightarrow I}h/T = 0.0273 \text{ J g}^{-1} \text{ K}^{-1}$  for form II turning into form I.<sup>2</sup> For the I-III transition, at 300 K, the pressure of the equilibrium equals 306 MPa using eq. SI.17. With SI.2 and SI.8, 306 MPa leads to  $V_I = 1110 \text{ Å}^3$  and  $V_{III} = 1050 \text{ Å}^3$ , thus  $\Delta_{III \rightarrow I}V = +59.9 \text{ Å}^3$  and with  $M_w = 209.24 \text{ g mol}^{-1} \Delta_{III \rightarrow I}V = 0.0431 \text{ cm}^3\text{g}^{-1}$ . The slope of I-III is 2.483 MPa K<sup>-1</sup> (eq. SI.17) multiplied by the change in volume leads to the entropy of transition:  $\Delta_{III \rightarrow I}s = 2.483 \times 0.0431 = 0.1069 \text{ J g}^{-1} \text{ K}^{-1}$ . III  $\rightarrow$  II is equivalent to III  $\rightarrow$  II: the entropy of transition  $\Delta_{III \rightarrow I}s = \Delta_{III \rightarrow I}s = 0.1069 - 0.0273 = 0.0796 \text{ J g}^{-1} \text{ K}^{-1}$ .

The volume difference can be estimated from the volumes of forms II and III at high pressure, 1000 MPa, equations SI.6 and SI.8:

 $V_{\rm II} = 1053 - 0.0349 \times 1000 \text{ MPa} = 1018.23 \text{ Å}^3$ 

 $V_{\rm III} = 1061 - 0.0339 \times 1000 \text{ MPa} = 1026.68 \text{ Å}^3$ 

 $\Delta_{\text{III} \rightarrow \text{II}} V = 1018.23 - 1026.68 = -8.45 \text{ Å}^3 = -0.00608 \text{ cm}^3 \text{ g}^{-1}$ 

The slope dP/dT = 0.0796/-0.00608 = -13.1 MPa K<sup>-1</sup>

With triple point I-II-III:

**II-III:** P = 1474 - 13.1 T

At P = 0 with II-III (eq SI.19)

**II-III-V:** 112 K, 0 Pa

With II-III and II-L (eqs. SI.19 and SI.16)

**II-III-L:** 185 K, –950 MPa

With I-III and I-L (eqs. SI.17 and SI.10)

**I-III-L:** 453 K, 687 MPa

With triple point II-III-L and I-III-L, the equilibrium line III-L is obtained:

**III-L:** P = -2078 + 6.1 T

(SI.20)

(SI.19)

With *P* = 0 III-L (eq. SI.20) leads to triple point III-L-V temperature 341 K

With the L-V equilibrium (eq. SI.12), the vapor pressure can be calculated:

**III-L-V:** 341 K, 6.6 Pa

# BIRCH-MURNAGHAN FITS OF THE P(V) DATA

Birch-Murnaghan equation:

$$P = 3K_{0T}f_{E}\left(1+2f_{E}\right)^{5/2}\left(1+\frac{3}{2}\left(K_{0T}^{'}-4\right)f_{E}+\frac{3}{2}\left(K_{0T}^{'}K_{0T}^{''}+\left(K_{0T}^{'}-4\right)K_{0T}^{'}-3\right)+\frac{35}{9}\right)f_{E}^{2}\right)$$
  
with  $f_{E} = \left[\left(V_{0T}/V\right)^{2/3}-1\right]/2$  (SI. 21)

*P* is the pressure, *V* is the unit-cell volume related to pressure *P*,  $V_{0T}$  is the unitcell volume at a given temperature at zero pressure,  $K_{0T}$  is the bulk modulus for a given temperature at zero pressure,  $K'_{0T}$  is its first derivative in relation to the pressure and  $K''_{0T}$  is its second derivative in relation to the pressure.



**Figure S7.** Unit-cell volume at zero pressure ( $V_{0T}$ ) for polymorphs I (black inverted triangles), II (red triangles), and III (blue circles) obtained by fitting the Birch-Murnaghan equation to the P(V) data in the paper



**Figure S8.** Bulk-modulus at zero pressure ( $K_{0T}$ ) for polymorphs I (black inverted triangles), II (red triangles), and III (blue circles) obtained by fitting the Birch-Murnaghan equation to the P(V) data in the paper

### **References:**

1. Nicolaï, B.; Mahé, N.; Céolin, R.; Rietveld, I. B.; Barrio, M.; Tamarit, J.-L., Tyrosine alkyl esters as prodrug: the structure and intermolecular interactions of l-tyrosine methyl ester compared to l-tyrosine and its ethyl and n-butyl esters. *Struct. Chem.* **2011**, *22* (3), 649-659.

2. Rietveld, I. B.; Barrio, M.; Tamarit, J.-L.; Nicolaï, B.; Van de Streek, J.; Mahé, N.; Céolin, R.; Do, B., Dimorphism of the Prodrug L-Tyrosine Ethyl Ester: Pressure-Temperature State Diagram and Crystal Structure of Phase II. *J. Pharm. Sci.* **2011**, *100* (11), 4774-4782.

3. Nicolai, B.; Itié, J.-P.; Barrio, M.; Tamarit, J. L.; Rietveld, I. B., Thermodynamics by synchrotron X-ray Diffraction: Phase relationships and crystal structure of L-tyrosine ethyl ester form III. *CrystEngComm* **2015**, *17*, 3974-3984.