Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

PCCP

Electronic Supplementary Information

Sequence selective photoinduced electron transfer of a pyreneporphyrin dyad to DNA

Myeong Eun Heo,^{*a*} Young-Ae Lee,^{*a*} Kazutaka Hirakawa,^{*b*} Shigetoshi Okazaki,^{*c*} Seog K. Kim,^{*a*,*} and Dae Won Cho^{*d*,*}

^{a.} Department of Chemistry, Yeungnam University, Gyeongsan, Gyeong-buk, 38541, Republic of Korea. E-mail: seogkim@yu.ac.kr

^{b.} Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka, 432-8561, Japan. E-mail: <u>hirakawa.kazutaka@shizuoka.ac.jp</u>

^{c.} Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan. E mail: <u>okazaki@hama-med.ac.jp</u>

^{d.} Department of Advanced Materials Chemistry & Center for Photovoltaic Materials, Korea University, Sejong City, 30019, Republic of Korea. E-mail: <u>dwcho@korea.ac.kr</u>

Fig. S1. Absorption spectrum of PyTMPyP associated with DNA (curve a, black), $poly[d(A-T)_2]$ (curve b, red) and $poly[d(G-C)_2]$ (curve c, blue). Combination of $0.75 \times$ (curve a) + $0.25 \times$ (curve c) is the same as curve a, and denoted by curve d. [polynucleotide] = 50μ M and [PyTMPyP] = 5μ M.

Fig. S2. Fluorescence emission spectrum of PyTMPyP (curve d, black dashed) and that bound to DNA (curve a, black, solid), $poly[d(A-T)_2]$ (curve b, red) and $poly[d(G-C)_2]$ (curve c, blue) upon excitation at 430 nm. The slit widths were 5 nm for both excitation and emission. [Polynucleotide] = 10 μ M and [PyTMPyP] = 0.5 μ M.

Fig. S3. (a) Step-wise reduction of absorption spectrum from measured LD spectrum (curve a) to obtain $T_3(\lambda)$, according to the equation (4) in the text. The curve b was selected to represent LD spectrum of $T_3(\lambda)$. The κ value varied between 0.15 and 3.5 with an increment of 0.5. (b) LD spectrum of the PyTMPyP-poly[d(G-C)₂] complex resolved into the contributions from two transitions (curves b and c) in the Soret region. Curve a denotes measured LD.