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S1. The model

The model developed for the simulations encompasses both optical and thermal properties of the 

core/shell systems and the Si crystal substrate. Thus, the computational strategy was based on the 

sequential solution of both the electromagnetic (EM) and thermal problems. The first problem 

was addressed by calculating the EM field in all the positions of the domain. This field was 

subsequently used to calculate the generated Joule heating, that was then introduced into the 

Fourier steady state equation as heat source. Here we considered the EM absorption as the only 

source of heat. 

In Figure SI1 the domain model, already shown in the main text, is replicated for convenience. 

The EM problem was solved on a much smaller domain defined in proximity of the core-shell 

structure (Figure SI1), while the thermal problem was solved on a real size domain. This choice 

is dictated by the heavy computational load involved in solving Maxwell’s equations. The EM 

domain includes the core-shell system, a substrate portion of 40 nm depth and an air portion, 

which is above (blow-up of Figure SI1). Lateral dimensions are limited by a cylindrical border of 

radius 3.5  w0, being w0 the exciting radiation beam waist. The thermal domain consists in a 7  ×

mm x 7 mm x 0.5  substrate, the core sphere of 230 nm in diameter and the shell layer with  𝑚𝑚

thickness, , between 10 nm and 100 nm. ℎ
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Figure S1.1 Thermal and EM domain (blow-up) utilised for solving the Fourier and Maxwell’s 
equation respectively. The EM domain is much narrower respect to the thermal one, but this does 
not affect the temperature estimation.

The incoming light was modelled as a laser focused by a 100X (0.9 numerical aperture, NA) 

microscope objective. Equation (1) shows the relation between the beam waist  and the  𝑤0

vacuum radiation wavelength ( ) under the aforementioned focalization conditions:𝜆0

                (1)
𝑤0 =

𝜆0

𝜋 × 𝑁𝐴

The focus was located in the centre of the core sphere. We note that no difference was found by 

moving the focus through the core/shell sphere. Second order scattering boundary conditions 

were applied on all the EM boundary surfaces to reproduce open boundaries.

For non-magnetic materials, the heat generated by EM absorption is given by:

𝑄𝑒 =
1
2

𝜀0𝑅𝑒{𝜔𝜀''(𝜔)
4𝜋

𝐸 ∙ 𝐸 ∗ }             (2)
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where  is the complex electric field, and  is the imaginary part of the relative dielectric 𝐸 𝜀''

permeability . 

The values of the relative dielectric permittivity used in the simulations are summarized in Table 
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c-Si a-Si SiO2

(=532 nm)𝜀𝑟 17.237+0.430 i
[1]

18.830+7.770 i
[2]

2.176+  i1 ∙ 10 ‒ 5

[3,4]

 (=633 nm)𝜀𝑟
15.072+0.152 i
[1]

17.512+3.547 i
[2]

2.167+  i1 ∙ 10 ‒ 5

[3,4]

 (=785 nm)𝜀𝑟
13.734+0.054 i
[1]

15.322+0.981 i
[2]

2.159+  i1 ∙ 10 ‒ 5

[3,4]

Table S1. Values of the complex dielectric function at three different wavelengths for c-Si, a-Si 
and SiO2.

Light to heat conversion in air was considered negligible, being  and  equal to zero. Once that 𝜀'' 𝜇''

the portion of electromagnetic energy converted in heat was obtained, the steady-state heat 

diffusion equation:

∇ ∙ (𝑘(𝑟,𝑇,ℎ)∇𝑇(𝑟)) + 𝑄𝑒(𝑟) = 0                (3)

where  is the thermal conductivity and  is the absolute temperature field was used. To  𝑘(𝑟,𝑇,ℎ) 𝑇(𝑟)

obtain    in all the points of the system, the non-linear differential equation (3) is solved, and 𝑇(𝑟)

boundary conditions were applied, to account for convection, radiative dissipation and Kapitza 

resistance.12
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The convection contribution to heat dissipation was accounted by applying on all the air-exposed 

boundaries the condition:

 (4)𝑞𝑐 ∙ 𝑛 = ℎ𝑐(𝑇𝑒𝑥𝑡 ‒ 𝑇)

where  is the convective heat flux,  is a versor normal to the surface and  is the heat transfer 𝑞𝑐 𝑛 ℎ𝑐

coefficient, whose expressions was taken from references [6-11].6-11  and  are respectively 𝑇 𝑇  
𝑒𝑥𝑡

the system and the external absolute equilibrium temperatures, with  kept fixed at the room 𝑇  
𝑒𝑥𝑡

temperature .293.15 𝐾

The radiative thermal dissipation contribution has been considered by imposing Stefan-

Boltzmann equation on all the air exposed surface.

 (5)𝑞𝑟 ∙ 𝑛 = 𝐴 𝜎 𝜀(𝑇4 ‒ 𝑇 4
𝑒𝑥𝑡)  

where  is the radiative heat flux,  the area of the exposed surface,   is the Stefan-Boltzmann 𝑞𝑟 𝐴 𝜎

constant,    the surface emissivity. For a-Si , for c-Si  and for SiO2   .𝜀 𝜀 = 0.9 𝜀 = 0.7 𝜀 = 0.8

At the SiO2/c-Si, SiO2/a-Si and c-Si/a-Si interface, a Kapitza resistance value of  1 ∙ 10 ‒ 9 𝑚2𝐾/𝑊

was set.12, 17

The radiative heat transfer by means of surface-to-surface radiation is negligible due to the 

absence of closely interfaced surfaces.5

The a-Si thermal conductivity (see note S.1.4) was set at 1.8 .16 Its value is independent 𝑊/𝑚 ∙ 𝐾

on temperature and film thickness. The thermal conductivity of c-Si, instead, strongly depends 

on temperature and film thickness h. Considering the bulk temperature dependence13  and 𝑘𝑇(𝑇)
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the thermal conductivity accumulation function14  for the size dependence,14,15 an 𝛼%(ℎ)

expression for  was obtained:𝑘(𝑇,ℎ)

         (6)𝑘(𝑇,ℎ) = 𝑘𝑇(𝑇) × 𝛼%(ℎ)

The calculated thermal conductivity can vary from 150  for bulk c-Si at room temperature 𝑊/𝑚 ∙ 𝐾

to less than 1  for a shell thickness of 10 nm at temperature higher than 700 K. The 𝑊/𝑚 ∙ 𝐾

thermal conductivity accumulation function is defined as the ratio  between its value 𝑘(ℎ)/𝑘∞

computed for a simulation cell with thickness  and its corresponding extrapolated value for a ℎ

bulk-like sample.  gives the contribution to the thermal conductivity provided by phonons 𝛼%(ℎ)

with mean free path up to .ℎ

As a consequence of the EM domain truncation, the heat source term does not extend all over the 

thermal domain, like in the real case. In order to account for the neglected heat, an equivalent 2D 

source is set in the thermal domain on a surface corresponding to the boundaries of the EM 

substrate domain. The source value in each point of the boundary was set equal to the time 

averaged Poynting vector magnitude evaluated in that point. It has been verified that such 

approximation overestimate the system’s maximum temperature of a value lower than 10 K. 

When such a power source is neglected, or temperature is set equal to the external equilibrium 

temperature (273.15 K), the temperature is heavily underestimated.

Additional notes:

1) Influence of the contact point size in the calculation of Tmax.

The value of Tmax depends on the value of the contact area between the sphere and the 

substrate. Figure S1.2 shows the trend of Tmax values as a function of the contact area, 
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calculated either under resonant (film thickness: 75 nm, red curve) and non-resonant (film 

thickness: 50 nm, black curve) conditions for a generic nanoantenna. The contact area utilized in 

the present work (1000 nm2), corresponding to a radius of 17.8 nm, is indicated by the red mark. 

We note that the contact area can be either increased or decreased down to about 250 nm2 

without any significant variation of Tmax. On the other hand, under resonant conditions, these 

values increases up to 1600 K when the contact area tends to zero. Thus the contact radius 

utilized in the present work (17.8 nm) represents a reliable choice to simulate the maximum 

temperature variations over a wide range of contact angle values. The high temperature 

variations resulting under efficient opto-thermal coupling conditions have been confirmed also 

from experimental data reported in reference 24 of the main text.

Figure S1.2. ΔTmax vs. contact area, calculated either under resonant (film thickness: 75 nm, red 
curve) and non-resonant (film thickness: 50 nm, black curve) conditions for generic non-
conformal nanoshells. The contact area utilized in the present work is indicated by the red mark. 
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2) Influence of air thermal conductivity

As most of the Raman experiments on core/shell spheres are carried out in air (in general a few 

droplets of an analyte in solution are drop-casted on the spheres and dried before Raman 

acquisition), the contribution of air thermal conductivity should be taken into account. However, 

the numerical calculations reported in the present work have been performed without considering 

the contribution of air thermal conductivity. Figure S1.3 shows that this approximation has a 

negligible effect on the simulations. This is justified by the fact that thermal conductivity in air 

ranges between 0.026 W/(mK) and 0.1 W/(mK) in the temperature interval considered in the 

numerical calculations, thus air is a good insulator and cannot efficiently dissipate the photo-

generated heat. A detailed study on the opto-thermal behaviour of the spheres in water is in 

progress and will be addressed in future works. 
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Figure S1.3. Example of the effects of air thermal conductivity on the results of numerical 
simulations (see also paragraph S3 for details on the system simulated in this case).

3) Calculation of the absorption cross section

The absorption cross section has been obtained by the following equation:

𝜎𝐴𝑏𝑠 =
 

∫
𝑉𝑜𝑙

𝑄𝑒

𝑆𝑖𝑛
𝑑𝑉

where 

𝑄𝑒 =
1
2

𝜀0
𝜔𝜀''(𝜔)

4𝜋
𝑅𝑒{𝐸 ∙ 𝐸 ∗ }   [ 𝑊

𝑚3]
is the power absorbed by the core-shell structure, and 

𝑆𝑖𝑛 =  
|𝐸|2

2 ∙ 𝑍0
 [ 𝑊

𝑚2]
represents the incident power density.

E is the electric field vector and is distributed in space as a focalized Gaussian beam.

 is the free space impedance.𝑍0

4) Dependence of thermal conductivity on size

The main effects of material’s size impact on the choice of the thermodynamic parameters. A 

detailed explanation of the values utilized in the present work and the criteria at the basis of their 

choice are detailed below.

1) a-Si: the thermal conductivity used in this work is 1.8 W/(m*K) and is temperature-invariant. 

Experimental evidences reported in reference 16 (SI) have been used as reference for the 

determination of such a value. In the latter work, the thermal conductivity of films with thickness 

values that are lower or comparable to those utilized in our simulations were determined in a 

temperature range spanning from 30 to 750 K. No significant variations with size and 

temperature were observed.
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2) c-Si: In this work the dependence of thermal conductivity on the film thickness has been 

accounted by taking the work of Melis et. al. (ref. 15 SI) as a main reference. In this work, the 

authors utilized a molecular dynamics computation technique to calculate the film thickness 

dependence of thermal conductivity. The final result gives an accumulation function that, 

multiplied for the bulk value gives the thermal conductivity for every film thickness. In addition, 

the dependence of thermal conductivity on temperature has been taken into account (see Figure 

S1.4 (a)). The overall thermal conductivity has been calculated as the product of the bulk 

temperature dependent value times the accumulation function.

3) SiO2: the value used for thermal conductivity is the bulk value because no less than 20 nm 

sized structures has been employed in our work. The temperature dependence of thermal 

conductivity is shown in Figure S1.4 (b).

Figure S1.4. Thermal conductivity as a function of the temperature of the system for a) c-Si and 
b) SiO2.

All those aspects further highlight the nonlinear nature of heat equations. This is one of the 

reasons behind the choice of Finite Elements Analysis to treat these systems.
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S2. Threshold power calculation at = 532, 633 and 785 nm

The threshold power, i.e. the power required to reach the bulk melting temperature of either a- or 

c-Si, was calculated for three different exciting laser wavelengths (532, 633 and 785 nm). Given 

the nonlinear relation between temperature and exciting power, a special algorithm was 

developed to find the threshold value, using COMSOL Multiphysics Livelink for Matlab 

Mathworks.

The algorithm was based on the following steps:

1. The system was excited with a low test power (P) and consequently the maximum 

temperature over the geometry  was computed and compared with the shell’s 𝑇𝑚𝑎𝑥(𝑃)

melting temperature .𝑇𝑡ℎ𝑟

2.  If  the test power was increased and step 1 was repeated. This step was 𝑇𝑚𝑎𝑥(𝑃) < 𝑇𝑡ℎ𝑟

repeated until two powers and differing by less than 2 mW were not found, so that 𝑃1 𝑃2

 and  .   𝑇𝑚𝑎𝑥(𝑃1) < 𝑇𝑡ℎ𝑟 𝑇𝑚𝑎𝑥(𝑃2) > 𝑇𝑡ℎ𝑟

3. The power corresponding to the melting temperature was found by making a linear 

interpolation between and .𝑃1 𝑃2

4. A check was done by setting the approximated threshold power as an input in the model. 

In all the cases, the resulting maximum temperature was less than 5 K away from the 

respective melting values.
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The threshold power as a function of film thickness for the conformal and non-conformal 

a-and c-Si cases are shown in Figures S2.1 and S2.2 for =633 and =785 nm, 

respectively. The calculations at =532 nm are shown and discussed in the main text. 

Figure S2.1. Threshold power as a function of film thickness, for (a) conformal and (b) non-
conformal core-shell systems. The red lines refer to c-Si while the black lines refer to a-Si shells. 
The irradiation by a C.W. laser at =633 nm was simulated.
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Figure S2.2 Threshold power as a function of film thickness, for (a) conformal and (b) non-
conformal core-shell systems. The red lines refer to c-Si while the black lines refer to a-Si shells. 
The irradiation by a C.W. laser at =785 nm was simulated.

S3. Extended simulation for c-Si nanoshells (thickness range: 10-200 nm)

For the c-Si nanoshell excited at =532 (red dashed line in Figure 3d in the main text) the optical 

absorption curve is shown only up to film thicknesses of 100 nm where a sudden increase is 

observed, suggesting the presence of optical resonances for thicker shells. To proof this 

hypothesis we extended the simulation range up to 200 nm-thick shells (Figure S3). However, 

we note that those resonances are associated to temperature values that exceed the melting 

threshold of Si, thus they cannot be exploited for Raman sensing purposes but could be very 

efficient local heaters.

S13



Figure S3. Maximum temperature shift (black line) and absorption cross-section (dashed red 
line) of the c-Si non-conformal nanoshells in 10-200 nm thickness range (=532 nm, power: 1.25 
mW).

S4. F.E. vs. T at = 532, 633 and 785 nm: Figures of Merit

Figure S4 shows the figures of merit (FOM) calculated from the ratio between field enhancement 

(F.E.) and temperature enhancement (T): FOM=FE/T. By contrasting F.E. to T, each FOM 

allows a rapid evaluation of the potential use (either Raman sensing or local heating) of a 

specific nanoshell irradiated at given wavelength. We note that the figure of merit decreases as 

the laser wavelength decreases. The system behaves like a good heat generator at short 

wavelength and as a good field enhancer at higher wavelengths. Moreover, the crystalline 
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systems generally offer better field enhancement performances, except in correspondence of 

resonances, where the figure of merit decays.

Figure S4. Figure of merit obtained at =532 nm, 633 nm, 785 nm and for an incident power of 
1.25 mW. 
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