Supporting Information

Lysine-based amino-functionalized lipids for gene transfection: the influence

of chain composition on 3D phase behaviour and transfection performance

Stephanie Tassler^a, Dorota Pawlowska^a, Christopher Janich^b, Julia Giselbrecht,^b Simon

Drescher,^b Andreas Langner,^b Christian Wölk^b and Gerald Brezesinski^a

^a Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1,

14476 Potsdam, Germany

^b Martin-Luther-University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-

Straße 4, 06120 Halle (Saale), Germany

Table of Contents:

- 1. Cubic Mesophases
 - 1.1 Im3m lattice
 - 1.2 Pm3n lattice
- 2. Different dispersions of lipids at 25 °C
- 3. 20 wt% lipid dispersions in Citrate buffer (5 mM, pH 4)
 - 3.1. SAXS and WAXS of TH10, TT10, OH10, OT10 and OO10 at 25 $^\circ\text{C}$
 - 3.2. Temperature dependence of TH10, TT10, OH10, OT10 and OO10
- 4. Temperature dependence of 20 wt% lipid dispersions in Carbonate buffer (5 mM, pH 10)
- 5. Small-angle and wide-angle X-ray scattering of **TH10** as aqueous dispersion with different amounts of **DOPE** in absence and presence of calf thymus DNA
 - 5.1. TH10/DOPE liposomes
 - 5.2. TH10/DOPE/ct-DNA lipoplexes
 - 5.2.1. SAXS and WAXS
 - 5.2.2. Transfection efficiency and cell viability in A549 cells
- 1. Cubic Mesophases
- 1.1 Im3m lattice

Table S1: The indexed reflexes for the bicontinuous cubic Im3m lattice ($Q^{229}\alpha$) and their Miller Indices.

index reflections (h ² +k ² +l ²) ^{0.5}	Miller Indices	Im3m lattice (Q_{α}^{229})
√2	(110)	Sound Sounds
v 4	(200)	
√6	(211)	

	(220)	
v 10	(310)	
√12	(222)	
√14	(321)	
√16	(400)	
√18	(411) or (330)	
√20	(420)	
√22	(332)	

1.2 Pm3n lattice

Table S2: The indexed reflexes of the micellar cubic Pm3n lattice ($Q^{223}\alpha$) and their Miller Indices.

index reflections (h ² +k ² +l ²) ^{0.5}	Miller Indices	Pm3n lattice (Q_{α}^{223})
√2	(110)	
√4	(200)	
√5	(210)	
√6	(211)	
√8	(220)	
v10	(310)	
V12	(222)	

2. Different dispersions of lipids at 25 °C:

Table S3: Repeating distance *d* and hexagonal lattice parameter *a* of different lipid dispersion at 25 °C.

			10 wt%		20 wt%		
					citrate		carbonate
		25 °C	bromid buffer (2 mM)		buffer (5	water	buffer (5
					mM)		mM)
mesophase	[Å]		рН 3	pH 10	рН 4	~рН 5.8	pH 10
		TH10	52.4	61.1	60.7	57.8	63.2
multi-	repeating	TT10	-	-	63.7	55.8	50.9
lamellar	distance d	OH10	53.9	54.0	60.0	74.2	64.2
		OT10	-	-	60.6	61.2	52.8
hexagonal	lattice	0010	57.8	57.9	56.5	56.5	56.6
	parameter a	DOPE	74.4	-	72.2	72.0	72.9

3. 20 wt% lipid dispersions in Citrate buffer (5 mM, pH 4):

The citrate buffer ($C_8H_7NaO_7$ – sodium citrate monohydrate) had a constant concentration of 5 mM and pH 4 was adjusted with NaOH solution (c = 1 M).

3.1. SAXS and WAXS of TH10, TT10, OH10, OT10 and OO10 at 25 °C:

Figure S1: A) SAXS pattern and **B)** corresponding WAXS pattern of 20 wt% lipid dispersions in citrate buffer pH 4 at 25 °C. **TH10** (black line), **TT10** (green line), **OH10** (red line), **OT10** (violet line) and **OO10** (blue line).

3.2. Temperature dependence of TH10, TT10, OH10, OT10 and OO10:

Figure S2: The repeating distance *d* of multi-lamellar bilayers of TH10 (black squares), TT10 (green triangles down), OH10 (red dots) and OT10 (violet diamonds) as well as the hexagonal lattice parameter *a* of OO10 (blue triangles up) and DOPE (wine star) as 20 wt% dispersions in citrate buffer pH 4 as a function of temperature. Dotted lines are for guiding the eyes only.

Figure S3: WAXS of 20 wt% lipid dispersions in citrate buffer pH 4 at different temperatures. A) TH10 in gel state at 65 °C (black straight line) and in liquid-crystalline state at 80 °C (black dashed line), B) TT10 in gel state at 60 °C (green straight line) and in liquid-crystalline state at 70 °C (green dashed line), C) OH10 in gel state at 65 °C (red straight line) and in liquid-crystalline state at 80 °C (red dashed line) and D) OT10 in gel state at 75 °C (violet straight line) and in liquid-crystalline state at 80 °C (red dashed line).

4. Temperature dependence of 20 wt% lipid dispersions in Carbonate buffer (5 mM, pH 10):

Figure S4: The repeating distance *d* of multi-lamellar bilayers of **TH10** (black squares), **TT10** (green triangles down), **OH10** (red dots) and **OT10** (violet diamonds) as well as the hexagonal lattice parameter *a* of **OO10**

(blue triangles up) and **DOPE** (wine star) as 20 wt% dispersions in carbonate buffer pH 10 as a function of temperature. Dotted lines are for guiding the eyes only.

5. Small-angle and wide-angle X-ray scattering of **TH10** as aqueous dispersion with different amounts of **DOPE** in absence and presence of calf thymus DNA:

Figure S5: A) SAXS pattern and B) corresponding WAXS pattern of TH10/DOPE (2:1) black, TH10/DOPE (1:1) red, TH10/DOPE (1:2) blue and TH10/DOPE (1:4) olive green as 20 wt% dispersion in water at 25 °C, while the pure TH10 and DOPE are given in grey.

Table S4: Phase state, peak position, repeating distance or lattice parameter and cross-sectional area obtained in SAXS and WAXS of 20 wt% dispersion of **TH10** and **DOPE** in different ratios in water at 25 °C.

	phase state	d [Å]	q ₁₁ [Å⁻¹]	q ₀₂ [Å ⁻¹]	A ₀ [Ų]	
TH10	L _{β'}	57.8	1.54 1.35		20.7	
TH10/DOPE 2:1	L _{β'}	81.6	peak $ ightarrow$ gel state			
TH10/DOPE 1:1	L _{β'}	80.2	peak → gel state			
TH10/DOPE 1:2	L _{β'}	81.8	peak → gel state			
	phase state	a [Å]	q ₁₁ [Å ⁻¹]	q ₀₂ [Å⁻¹]	A ₀ [Ų]	
DOPE	H _α	72	halo \rightarrow molten chains			
TH10/DOPE 1:4	Q _a ²²⁹	138	halo \rightarrow molten chains			

5.2. TH10/DOPE/ct-DNA lipoplexes:

5.2.1. SAXS and WAXS:

Figure S6: A) SAXS pattern and B) corresponding WAXS pattern of TH10/DOPE (2:1) / DNA (2:1) black,
 TH10/DOPE (1:1) / DNA (2:1) red, TH10/DOPE (1:2) / DNA (2:1) blue and TH10/DOPE (1:4) / DNA (2:1) olive green as 20 wt% dispersion in water at 25 °C, while the pure TH10 and DOPE are given in grey.

N/P-ratio

Figure S7: Transfection efficiency of **TH10** and **DOPE** in different ratios measured by detecting EGFP fluorescence and the corresponding cell viability values for different lipid dispersions complexed with pEGFP-C2-DNA in comparison with the standard Lipofectamine 2000[®] in A549 (human lung cancer) cells.