Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

SUPPORTING INFORMATION

Table S1	Comparison of literature results of DSSCs with different nitrogen doping
	methods on TiO_2 .

N-doping	WE	Eff	Eff	Jsc	Voc	FF	Ν	TiO ₂	WE	Dye
method	area	undoped	N-doped	N-doped	N-doped	N-doped	atom.	particle	thick-	
	(cm^2)	DSSC	DSSC	DSSC	DSSC	DSSC	(%)	size	ness	
		(%)	(%)	(mA/cm ²)	(V)			(nm)	(µm)	
sol-gel ¹	0.36	4.04	6.01	12.82	0.607	0.77	-	550	12	N719
solvothermal 2	0.25	1.56	4.70	11.16	0.750	0.56	-	Ø 241 nm nanofibe r	12-15	N719
gas trt ³	0.16	8.90	10.10	19.05	0.778	0.68	2.49	25	15	N719
sol-gel ³	0.16	7.20	8.30	15.58	0.784	0.68	2.49	25	15	N719
sputter ⁴	2.25	lower	higher	2.32	0.670	-	-	-	2	N3
sol-gel ⁵	-	5.34	5.10	11.00	0.745	0.62	-	-	18	N719
solvothermal 6	0.1	1.52	2.53	8.82	0.670	0.43	1.43	10 nm N-TiO2	1.8	N719
gas trt (in-house)	0.25	5.51	6.60	15.52	0.727	0.59	1.63	20	15	N719

Fig. S1 SEM images of the cross section and surface of a fabricated TiO₂ working electrode

Fig. S2 (a) UV-Vis spectra and (b) Tauc plot of TiO₂ and N- TiO₂ working electrodes.

Fig. S3 (a) XPS spectra of TiO_2 and N- TiO_2 working electrodes, (b) XPS spectra at O1s core level of TiO_2 and N- TiO_2 working electrodes, and (c) XPS spectrum at N1s core level of N- TiO_2 working electrode.

Figure S3 shows N1s spectrum of N-doped TiO₂. The N1s peak was deconvoluted into two peaks attributed to O-Ti-N at 398.8 eV and N-Ti-N at 395.9 eV. The higher binding energy peak was assigned to O-Ti-N due to the reduced electron density of nitrogen compared with oxygen in O-Ti-O.⁷⁻⁹ The N content of the N-TiO₂ catalyst was determined to be $A_{N/Ti} = 5.4/100$ atomic ratio.

Fig S4 Repeat results of current density-voltage curves of DSSCs based on TiO₂ and N-TiO₂ working electrodes.

Fig. S5 Bode plot of TiO₂/N719 and N-TiO₂/N719 DSSCs

Fig. S6 Adsorption rate and amount of ethanol on TiO_2 and N- TiO_2

Catalyst	N %	E _{bg} (eV)	Ef (V, NHE)
TiO ₂	0.00	3.18	-0.63
TiO ₂ -N1	1.01	2.46	-0.56
TiO ₂ -N1	11.70	2.20	-0.47

Table S2. Literature results of bandgap and Fermi level on TiO_2 and $N-TiO_2^{10}$

Table S3. Comparison of materials' property with literature/label value

Property	Experiment results	Literature/label value
Particle size of TiO ₂	$25 \pm 5 \text{ nm by SEM}$	25 nm (Aldrich)
N719 dye	FTIR spectrum in Fig. S7	<i>RSC Adv.</i> , 2015,5, 102803-102810

Fig. S7 FTIR spectrum of N719 dye used in this study

Reference:

- P. Xiang, X. Li, H. Wang, G. Liu, T. Shu, Z. Zhou, Z. Ku, Y. Rong, M. Xu, L. Liu, M. Hu, Y. Yang, W. Chen, T. Liu, M. Zhang and H. Han, *Nanoscale Research Letters*, 2011, 6, 606.
- M. Motlak, M. S. Akhtar, N. A. M. Barakat, A. M. Hamza, O. B. Yang and H. Y. Kim, Electrochimica Acta, 2014, 115, 493-498.
- 3. W. Guo, L. Wu, Z. Chen, G. Boschloo, A. Hagfeldt and T. Ma, *Journal of Photochemistry and Photobiology A: Chemistry*, 2011, **219**, 180-187.
- 4. D. A. Duarte, M. Massi and A. S. da Silva Sobrinho, *International Journal of Photoenergy*, 2014, **2014**, 13.
- 5. H. Tian, L. Hu, C. Zhang, W. Liu, Y. Huang, L. Mo, L. Guo, J. Sheng and S. Dai, *The Journal of Physical Chemistry C*, 2010, **114**, 1627-1632.
- 6. H. Wang, H. Li, J. Wang, J. Wu, D. Li, M. Liu and P. Su, *Electrochimica Acta*, 2014, **137**, 744-750.
- 7. J. Wang, W. Zhu, Y. Zhang and S. Liu, *The Journal of Physical Chemistry C*, 2007, **111**, 1010-1014.
- 8. G. Yang, Z. Jiang, H. Shi, T. Xiao and Z. Yan, *Journal of Materials Chemistry*, 2010, **20**, 5301-5309.
- 9. X. Chen and C. Burda, *The Journal of Physical Chemistry B*, 2004, **108**, 15446-15449.
- 10. H. Kisch, S. Sakthivel, M. Janczarek and D. Mitoraj, *The Journal of Physical Chemistry C*, 2007, **111**, 11445-11449.