Supplementary Information for

Ab initio identification of the Li-rich phase in LiFePO₄

Hua Zeng, Yue Gu, Gaofeng Teng, Yimeng Liu, Jiaxin Zheng,* and Feng Pan*

School of Advanced Materials, Peking University, Shenzhen Graduate School,

Shenzhen 518055, People's Republic of China

*Corresponding authors: zhengjx@pkusz.edu.cn and panfeng@pkusz.edu.cn

Fig. S1 (a-i) Schematics for different structures of $Li_{1+x}Fe_{1-x}PO_4$ (x = 12.5%). The total energies of them are -759.036, -758.512, -758.964, -758.441, -758.399, -758.384, -758.961, -758.894 and -758.284 eV, respectively.

Fig. S2 Schematic for the structure of $Li_{1+x}Fe_{1-x}PO_4$ (x = 18.75%). (a) in *ac* plane; (b) in *ab* plane.

Fig. S3 The molecular dynamics simulation on Fe_{1-x}PO₄ (x = 6.25% and 12.5%) was performed under room temperature condition (300 K) with the Nose-Hoover thermostat. A 3 ps NVT (fixed number of atoms, constant volume and constant temperature) was carried out. (a) and (b) are the initial and final atomic configurations obtained at the time of 0 and 3 ps for x = 6.25%. (c) and (d) are the initial and final atomic configurations obtained at the time of 0 and 3 ps for x = 6.25%.

Table S1 The average Fe-O bond length for different Fe-ions in LiFePO₄ and around the excess Li-ion at Fe site in $\text{Li}_{1+x}\text{Fe}_{1-x}\text{PO}_4$ (x = 6.25% and 12.5%).

x	Fe ₁ -O [Å]	Fe ₂ -O [Å]	Fe ₃ -O [Å]	Fe4-O [Å]
0	2.184	2.184	2.184	2.184
6.25%	2.179	2.179	2.127	2.127
12.5%	2.175	2.175	2.077	2.077

Fig. S4 The PDOS of $Li_{1+x-y}Fe_{1-x}PO_4$. (a) x = 0, y = 1+x; (b) x = 6.25%, y = 1-2x; (c) x = 6.25%, y = 1+x; (d) x = 12.5%, y = 1-2x; (e) x = 12.5%, y = 1+x. The Fermi level (the vertical red dashed line) is set to zero energy.

Fig. S5 The PDOS of $\text{Li}_{1+x-y}\text{Fe}_{1-x}\text{PO}_4$ (x = 6.25%). (a) y = 0; (b) y = 1-2x; (c) y = 1+x. The Fermi level (the vertical red dashed line) is set to zero energy.

Fig. S6 (a) Schematic for the structure of $\text{Li}_{1+x}\text{Fe}_{1-x}\text{PO}_4$. 3 stands for a Li-ion, and 4 stands for a Li-vacancy in the [010] channel. (b) The energy barriers for a Li-ion to hop from the 3 site to the 4 site in the bulk $\text{Li}_{1+x}\text{Fe}_{1-x}\text{PO}_4$ (x = 0, 6.25% and 12.5%).

Table S2 The distance between two adjacent Li sites along the [010] channel in $Li_{1+x}Fe_{1-x}PO_4$.

x	1-2 [Å]	3-4 [Å]
0	3.042	3.042
6.25%	2.940	2.914
12.5%	2.941	2.892