Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supporting Information

Morphology control of anatase TiO₂ for well-defined surface chemistry

Gabriel Jeantelot,^a Samy Ould-Chikh,*^a Julien Sofack-Kreutzer,^a Edy Abou-Hamad,^a Dalaver H. Anjum,^b Sergei Lopatin,^b Moussab Harb,^a Luigi Cavallo^a and Jean-Marie Basset*^a

^a Kaust Catalysis Center (KCC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

^b Imaging and Characterization Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

KEYWORDS: Titanium dioxide, Anatase, morphology, surface hydroxyls, fluorine, NMR, DFT, FT-IR, SOMC

The TEM surface area and 001 surface proportion are given by the following equations:

$$\tan(\alpha) = \frac{c}{a}$$

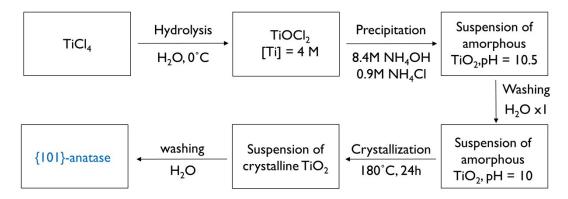
$$S_{\{101\}} = 2\sqrt{1 + \tan^2(\alpha)} * \left(l_{[100]}^2 - \left(l_{[100]} - \frac{l_{[001]}}{\tan(\alpha)}\right)^2\right)$$

$$S_{\{001\}} = 2 \left(l_{[100]} - \frac{l_{[001]}}{\tan{(\alpha)}} \right)^2$$

$$S_{tot} = S_{\{001\}} + S_{\{101\}}$$

$$V = \frac{\tan(\alpha)}{3} * \left(l_{[100]}^{3} - \left(l_{[100]} - \frac{l_{[001]}}{\tan(\alpha)} \right)^{3} \right)$$

$$\rho = \frac{4 * M_{TiO_2}}{c * \alpha^2 * N_a}$$


$$A_{TEM} = \frac{S_{tot}}{\rho * V}$$

$$\%\{001\} = \frac{S_{\{001\}}}{S_{tot}}$$

With N_a Avogadro's constant, M_{TiO2} the molar mass of TiO_2 , c and a the unit cell parameters of anatase, ρ the density of anatase, α the angle between the (001) and (101) planes, $I_{[100]}$ the average length of a particle along the [100] axis, $I_{[001]}$ the average length of a particle along the [001] axis, $S_{\{101\}}$ the average surface of a particle on $\{101\}$ facets, $S_{\{001\}}$ the average surface of a

particle on $\{001\}$ facets, S_{tot} the average total surface of a particle, A_{TEM} the TEM surface area, $\%\{001\}$ the proportion of $\{001\}$ facets in the total particle surface.

{101}-anatase synthesis:

{001}-anatase synthesis:

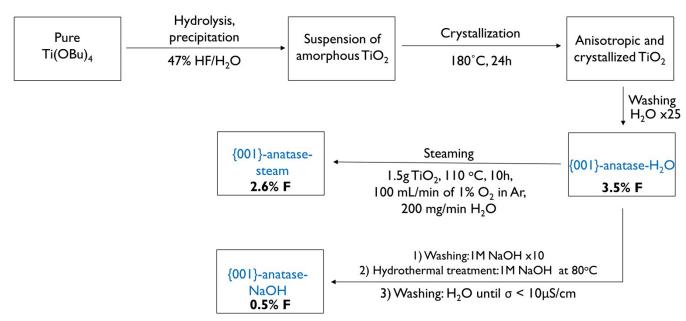


Fig. S1 Schematic representation of the syntheses of anatase samples used in this study

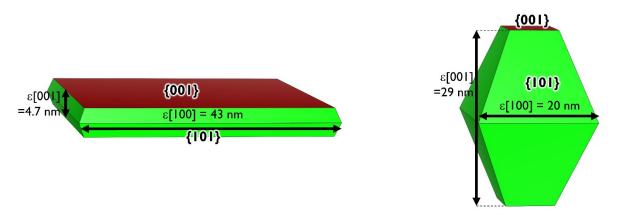


Fig. S2 Average shape of {001}-anatase (left) and {101}-anatase, based on TEM measurments.

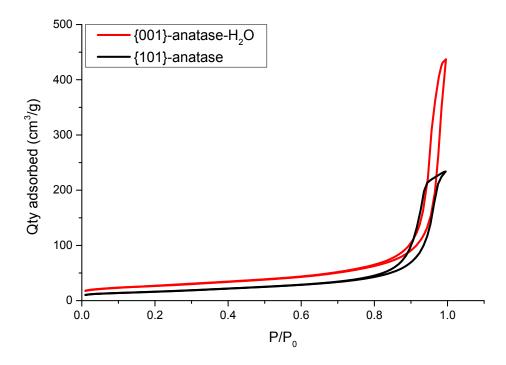


Fig. S3 BET N2 adsorption isotherms of $\{001\}$ -anatase- H_2O and $\{101\}$ -anatase

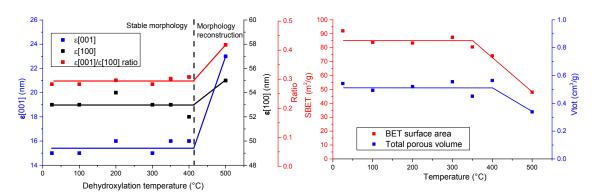


Fig. S4 Evolution of the [001] and [100] XRD coherent domains (left) and BET surface area and porous volume (right) of {001}-anatase against dehydroxylation temperature

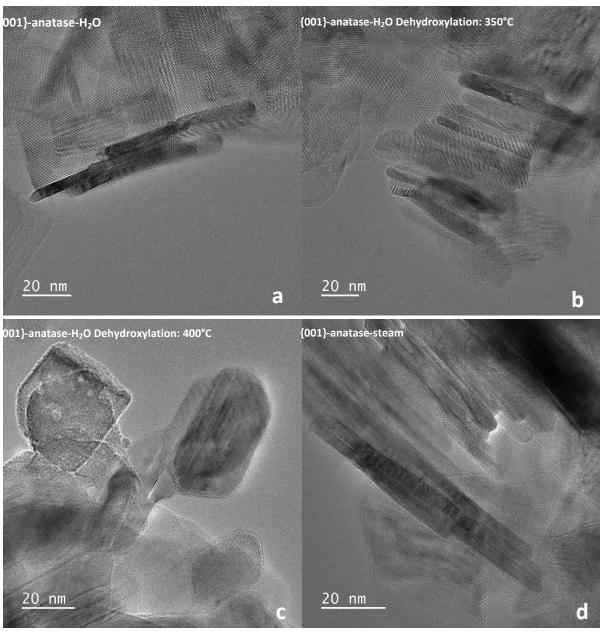


Fig. S5 TEM micrographs of $\{001\}$ -anatase. a) $\{001\}$ -anatase- H_2O b) $\{001\}$ -anatase- H_2O after dehydroxylation at 350°C. No alteration is visible. c) $\{001\}$ -anatase- H_2O after dehydroxylation at 400°C. Platelets become fused together and devellop crystallographic holes d) $\{001\}$ -anatase-steam. No alteration is visible relative to $\{001\}$ -anatase- H_2O

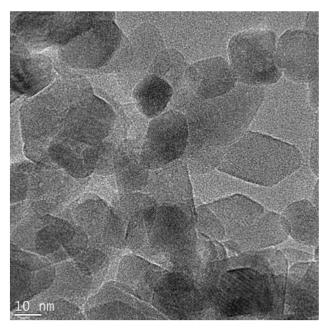


Fig. S6 TEM micrograph of {101}-anatase.

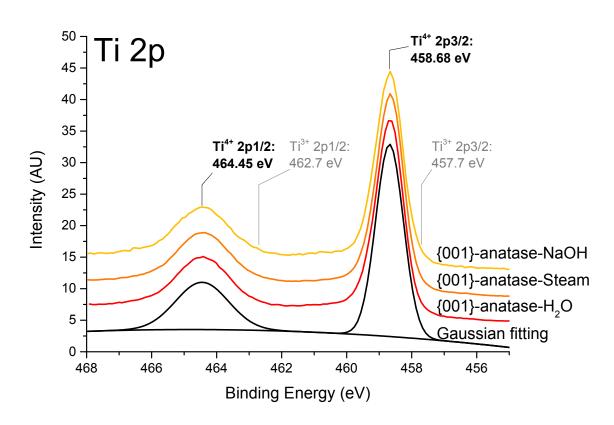


Fig. S7 XPS spectra showing the Ti 2 p binding energies of {001}-anatase samples and their gaussian fitting : only Ti $^{4+}$ are seen, with Ti $^{4+}$ 2p1/2 and 2p3/2 binding energies of 464.45 eV and 458.68 eV respectively. No Ti $^{3+}$ 2p1/2 or 2p3/2 peaks are seen at 462.7 or 457.7 eV. $^{1-3}$

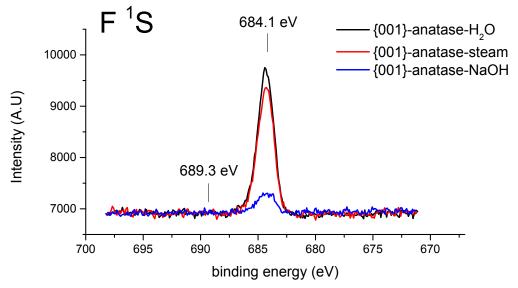
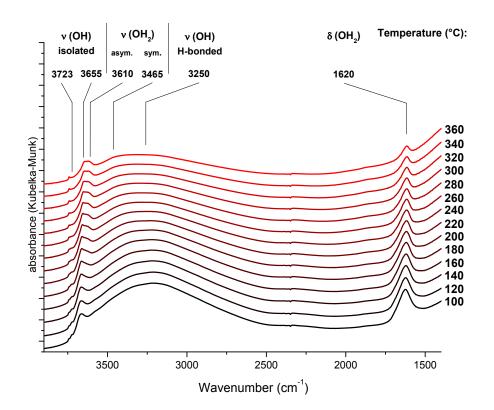



Fig. S8 XPS spectra showing the F ¹S binding energy of {001}-anatase samples

 $\textbf{Fig. S9} \ \text{In-situ DRIFTS of } \{001\}\text{-anatase-} \\ H_2O \ under \ flow \ of 20\% \ oxygen \ in \ argon \ at \ varying \ temperature$

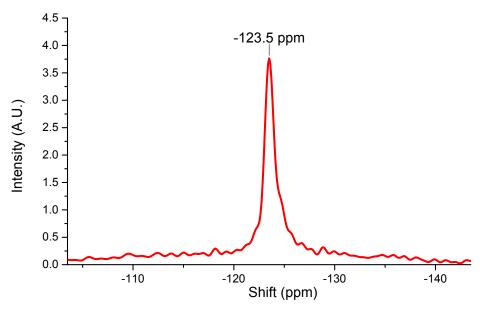
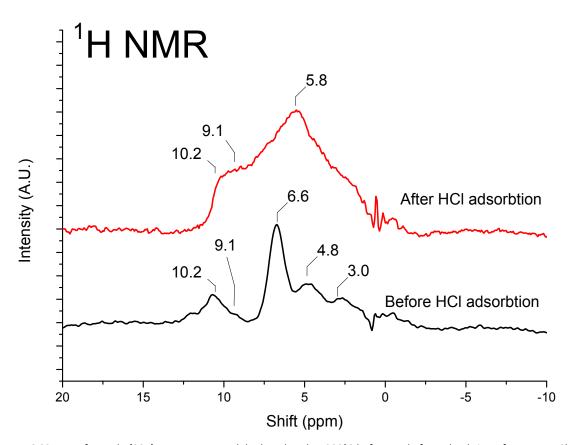



Fig. S10 ¹⁹F MAS SSNMR of sample {001}-anatase-steam after dehydroxylation at 200°C

Fig. S11 1H MAS SSNMR of sample {001}-anatase-steam dehydroxylated at 200°C before and after adsorbtion of gaseous HCl (1 bar HCl for 5h, 10⁻⁵ mbar dynamic vacuum for 12h).

- 1 X. Liu, S. Gao, H. Xu, Z. Lou, W. Wang, B. Huang and Y. Dai, *Nanoscale*, 2013, **5**, 1870–1875.
- T.-S. Yang, M.-C. Yang, C.-B. Shiu, W.-K. Chang and M.-S. Wong, *Appl. Surf. Sci.*, 2006, **252**, 3729–3736.
- 3 L. Si, Z. Huang, K. Lv, D. Tang and C. Yang, J. Alloys Compd., 2014, **601**, 88–93.