Electronic Supplementary Material

Ferroelectric-mediated filamentary resistive switching in P(VDF-TrFE)/ZnO

nanocomposite films

Tae Yeon Kim, ^a Gopinathan Anoop,^a Yeong Jun Son, ^a Soo Hyeon Kim, ^b Eunji Lee ^a and Ji Young Jo ^{a*}

^a School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Oryong-Dong, Buk-Gu, Gwangju 61005, South Korea.

^b Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea.

*jyjo@gist.ac.kr

Figure S1. (a) TEM image of the as-synthesized ZnO NPs and (b) the corresponding particle size distribution

Figure S2. (a) P-E curves of P(VDF-TrFE)_ZnO NPs-20, P(VDF-TrFE)_ZnO NPs-25, and P(VDF-TrFE)_ZnO NPs-30 nanocomposites and (b) the PE loops of P(VDF-TrFE)_ZnONPS-20 nanocomposites at various applied voltages.

Figure S3. P-E curves of P(VDF-TrFE) and P(VDF-TrFE)_ZnO NPs-20 nanocomposites film recorded at 35 V, 15 V, respectively.

Figure S4. The *I-V* curves of Au/PVDF_ZnO NPs/n⁺⁺ Si device

Figure S5. The *I-V* curves of (a) Au/P(VDF-TrFE)_ZnO NPs-25/n⁺⁺ Si and (b) Au/P(VDF-TrFE)_ZnO NPs-30/ n⁺⁺ Si devices

Figure S6. Electrical characterization of the Au/P(VDF-TrFE)_ZnO NPs-25/n⁺⁺Si and Au/P(VDF-TrFE)_ZnO NPs-30/n⁺⁺Si devices. (a) Stability of R_{HRS} and R_{LRS} through the retention test of the P(VDF_TrFE)_ZnO NPs devices. (b) Cumulative probability distributions of the resistance values at a read voltage of 0.5 V for the initial 10,000 cycles. The devices exhibit poor stability.

Figure S7. The cumulative probability of V_{SET} and V_{RESET} of 20 different Au/P(VDF-TrFE)_ZnONPs-20/n⁺⁺Si device.

Figure S8. (a) Cross-sectional TEM image of unbiased Au/P(VDF-TrFE)_ZnO NPs-20/ n⁺⁺ Si device. (b-g) STEM and EDS maps of the corresponding area. ZnO NPs are uniformly dispersed in the P(VDF-TrFE) matrix.

Figure S9. The dependence of cell resistance (HRS and LRS) with the various device area for identification whether the conduction occurs through localized filamentary channels.