Supplementary Information for "Crystallographic and

Spectroscopic Evidence for the Intrinsic Distortion in Disordered Crystal: β -NaGdF₄"

Jianning Jin, Hua Yu*, Liying Guo, Jinjin Liu, Bing Wu, Yuao Guo, Yuting Fu, Lijuan Zhao**

Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and Applied Physics Institute, Nankai University, Tianjin 300071, China

*Corresponding Author: * yuhua@nankai.edu.cn, ** zhaolj@nankai.edu.cn

Crystal Structure

Figure S1. Crystal average structure of β -NaREF₄ (SG: *P*-6). The (*1a*) site is occupied by RE³⁺ ions, the (*1f*) site is half occupied by RE³⁺ ions and half by Na⁺ ions, whereas the (*3j*) and (*3k*) sites are occupied by two types of fluorine ions denoted F₁ and F₂, respectively^[1].

Figure S2. XRD patterns of β -NaGdF₄, β -NaGdF₄:0.5%Eu, β -NaGdF₄:1%Eu, β -NaGdF₄:1%Eu, β -NaGdF₄:1%Eu, and β -NaEuF₄ samples.

First-principles simulations

All calculations were performed using the DMol³ package of Materials Studio 7.0^[2], which is based on the density functional theory (DFT) methods. The Local Density Approximation (LDA) with the Perdew and Wang (PWC) exchange-correlation function in DFT^[3,4], and the basis set using double numerical plus d-functions (DND) atomic orbitals version 3.5 were employed^[5]. The real-space global orbital cutoff radius was chosen to be 5.8 Å. The Brillouin-zone was sampled into $3 \times 3 \times 2 k$ -point. The energy tolerance accuracy, maximum force, and displacement were set as 10^{-5} Ha, 2×10^{-3} Ha/Å, and 5×10^{-3} Å, respectively.

Figure S3. 3 type different arrangement of Gd^{3+} and Na^+ ions at 1f site in β -NaGdF₄ along c axis super cell model.

Comments for Figure S3: In ordered to research the arrangement of Gd^{3+} and Na⁺ ions at *If* site in β -NaGdF₄ along c axis, the binding energy of 3 kinds (shown in Figure S3) of β -NaGdF₄ super cell model were calculated. The binding energy is -3257.90243 eV, -3257.34877 eV and - 3259.09539 eV, respectively, for 3 different kinds of structure model. Comparing the results of binding energy, the super cell model, in which Gd^{3+} and Na^+ ions arrangement at *If* site alternate with a translation distance c' = 2c, has the lowest binding energy. The result illustrate that the situation of (c) is most likely to be in the real case.

Photoluminescence (PL) spectra of β-NaGdF₄:Eu³⁺

Figure S4. Emission spectra of β -NaGd_{1-x}F₄:xEu (x=0.005, 0.01, 0.1) samples under direct and indirect excitation at the wavelength λ_{ex} =393.8 nm(a) and 271.4 nm(b).

EXAFSs

EXAFS fitting report of β-NaGdF₄

Reduced Chi-square = 422

R-factor = 0.0025

Guess parameters +/- uncertainties (initial guess):

amp = 0.99 + - 0.098 (1.0000)

 $enot_f = 4.80 + -0.87 (0.0000)$

ss 1 = 0.0069 + -0.0015 (0.0030)

 $ss_3 = 0.0056 + - 0.0040 (0.0030)$

 $enot_g = -6.23 + -6.09 (0.0000)$

 $enot_n = 16.00 + -0.18 (0.0000)$

 $ss_4 = 0.00091 + - 0.0059 (0.0030)$

 $alph_1 = 0.00092 + -0.0041 (0.0100)$

alph 2 = -0.014 + -0.013 (0.0100)

 $alph_3 = -0.014 + -0.0088 (0.0100)$

 $alph_4 = 0.051 + -0.10 (0.0100)$

Def parameters (using "FEFF0: Path 1: [F1_1]"):

ss 2 = 0.0069

Correlations between variables:

ss_4 and alph_4 --> 0.8802

amp and ss_1 --> 0.8325

enot_g and alph_3 --> 0.8149

- enot_f and alph_1 --> 0.6758
- ss_3 and ss_4 --> -0.5811
- ss_3 and alph_4 --> -0.5127
- enot_f and alph_2 --> 0.4960
- enot_g and ss_4 --> 0.4330
- ss_3 and alph_3 --> 0.4003
- $enot_f and enot_n --> 0.3488$
- enot_g and alph_4 --> 0.3187
- All other correlations are below 0.25

Figure S5. Fit of the theoretical (a) $\chi(R)$ and (b) $\chi(k)$ (points) in R and K space^[6], respectively, to the Eu L_{III} edge data of β -NaEuF₄ (solid line) at 300 K. The range over which the fit has been made is shown by the dash line.

Cation Site	Bond	Experimental radial distance of β-NaEuF ₄ (Å)	Experimental radial distance of β -NaGdF ₄ (Å)
1f	RE _{1f} -F ₂	2.3236	2.3277
	RE_{1f} - F_1	2.4098	2.4138
	RE _{1f} -Na _{1f}	3.6107	3.7845
	RE_{1f} - Gd_{1a}	3.9242	3.8614
1a	RE_{1a} - F_1	2.3359	2.3322
	RE_{1a} - F_2	2.3734	2.3694
	RE_{1a} - Gd_{1a}	3.6107	3.6043
	RE_{1a} - Gd_{1f}	3.9242	3.8614
	RE_{1a} -Na _{1f}	3.9399	3.9672

Table S1. The bond length (Å) of simulation value of Eu L_{III} and Gd L_{III} edge in pure β -NaEuF₄ and β -NaGdF₄.

Comments for Figure S6 and Table S1: The EXAFSs testing and fitting on β -NaEuF₄ sample, which belongs to the same family of compounds as β -NaGdF₄, also was carried out. The experiment and fitting result of shown in Figure S6 and Table S1. In the fitting process the same structural model as β -NaGdF₄ was used. And according to the result listed in Table S1, the trend of bond length is similar to ones in β -NaGdF₄ crystal. This can illustrate that β -NaEuF₄ and β -NaGdF₄ have the same crystal structure.

EXAFS fitting report of β -NaEuF₄

Reduced Chi-square = 3900

R-factor = 0.000250

Guess parameters +/- uncertainties (initial guess):

amp = 1.00 + - 0.100 (1.0000)

 $enot_e = 1.12 + 4.51 (0.0000)$

 $ss_1 = 0.0075 + 0.0011 (0.0030)$

enot n = 14.49 + 0.40 (0.0000)

 $enot_f = 5.02 + -0.99 (0.0000)$

 $ss_3 = 0.0071 + 0.0034 (0.0030)$

 $ss_4 = 0.0011 + - 0.0026 (0.0030)$

 $alpha_1 = -0.0039 + -0.0039 (0.0100)$

 $alpha_2 = -0.022 + -0.011 (0.0100)$

alpha 3 = -0.0040 + -0.0075 (0.0100)

Def parameters (using "FEFF0: Path 1: [F1_1]"):

 $ss_2 = 0.0075$

Correlations between variables:

enot_e and $alpha_3 \rightarrow 0.9337$

amp and ss_1 --> 0.7683

ss_3 and ss_4 --> -0.7549

enot_f and alpha_1 --> 0.7374

alpha_2 and alpha_3 --> 0.4638

- amp and enot_f --> -0.3479
- enot_e and alpha_2 --> 0.3261
- ss_1 and enot_f --> -0.3077
- alpha_1 and alpha_3 --> -0.2716
- amp and ss_4 --> 0.2672
- ss_4 and alpha_1 --> -0.2641
- enot_f and alpha_2 --> 0.2613

All other correlations are below 0.25

Reference

[1] Burns, J. H. Crystal Structure of Hexagonal Sodium NeodymiumFluoride and Related Compounds. Inorg. Chem. 1965, 4(6), 881-886.

[2] Delley, B. From Molecules to Solids with the DMol³ Approach [J]. J.Chem. Phys. 2000, 113(18), 7756-7764.

[3] Delley, B. An all-electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules [J]. J. Chem. Phys. **1990**, 92(1), 508-517.

[4] Perdew, J. P., Wang Y. Accurate and Simple Analytic Representation of the Electron-gas Correlation Energy [J]. Phys. Rev. B: Condens. Matter 1992, 45(23), 13244-13249.

[5] Inada, Y.; Orita H. Efficiency of Numerical Basis Sets for Predicting the Binding Energies of Hydrogen Bonded Complexes: Evidence of Small Basis Set Superposition Error Compared to Gaussian Basis Sets [J].
J. Comput. Chem. 2008, 29, 225-232.

[6] Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-ray Absorption Spectroscopy Using IFEFFIT [J]. J. Synchrotron Radiat. **2005**, 12, 537-541.