Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

SUPPLEMENTARY MATERIAL

Monte Carlo Simulations of the Separation of a Gas Mixture ($CH_4 + CO_2$) using Hydrates

Nikolaos I. Papadimitriou^{1,2}, Ioannis N. Tsimpanogiannis^{1,3,*}, Ioannis G. Economou⁴ and Athanassios K. Stubos¹

¹ National Center for Scientific Research "Demokritos", Environmental Research Laboratory, 15310 Aghia Paraskevi Attikis, Greece

> ² Public Power Corporation, Testing Research and Standards Center Leontariou 9, Kantza, 15351 Pallini, Greece

³ National Center for Scientific Research "Demokritos", Molecular Thermodynamics and Modelling of Materials Laboratory, 15310 Aghia Paraskevi Attikis, Greece

⁴ Texas A&M University at Qatar, Chemical Engineering Program, Education City, PO Box 23874, Doha, Qatar

^{*}Corresponding author:<u>i.tsimpanogiannis@qatar.tamu.edu</u> (Ioannis N. Tsimpanogiannis)

Figure S–1. Chemical potential of pure CH_4 (a) and CO_2 (b) as a function of pressure. GCMC data points are denoted with symbols (circles – CH_4 , triangles – CO_2). Solid lines are guides to the eye only. Confidence limits are smaller than the symbol sizes.

Figure S–2. Chemical potential of CH_4 as a function of pressure for a binary gas mixture containing $CH_4 + CO_2$ for four values of the mole fraction of CH_4 . GCMC data points are denoted with symbols (circles – CH_4). Solid lines are guides to the eye only. Confidence limits are smaller than the symbol sizes.

Figure S–3. Chemical potential of CO_2 as a function of pressure for a binary gas mixture containing $CH_4 + CO_2$ for four values of the mole fraction of CH_4 . GCMC data points are denoted with symbols (triangles – CO_2). Solid lines are guides to the eye only. Confidence limits are smaller than the symbol sizes.

Figure S–4. Pressure as a function of CO_2 composition (mole fraction) in gas feed, *z*, and hydrate phase, *h*, for two temperatures denoted with different color: (a) 274 K (brown color), and 275 K (magenta color), and (b) 290 K (blue color). Lines denote calculations using the CSMGem simulator (Sloan and Koh, [18]), magenta and blue points denote GCMC simulations, and brown points denote experimental measurements reported by Lee *et al.* [44]. Confidence limits are smaller than the symbol sizes.

Figure S–5. Average cage occupancies for large (a) and small (b) cages as a function of pressure for a binary gas mixture containing $CH_4 + CO_2$ with the feed mole fraction of CH_4 equal to 0.8. GCMC data points are denoted with symbols (circles – CH_4 , triangles – CO_2). Confidence limits are smaller than the symbol sizes. Lines are guides to the eye only. Vertical dashed lines denote the hydrate equilibrium pressure for the particular temperature. Color code: magenta – 275 K and blue – 290 K.

Figure S–6. Efficiency of the gas mixture separation using hydrates as a function of pressure for a binary gas mixture containing $CH_4 + CO_2$ with the feed mole fraction of CH_4 equal to 0.8: (a) Split Fraction, and (b) Separation Efficiency. GCMC data points are denoted with symbols (circles – CH_4 , triangles – CO_2). Confidence limits are smaller than the symbol sizes. Lines are guides to the eye only. Vertical dashed lines denote the hydrate equilibrium pressure for the particular temperature. Color code: magenta – 275 K and blue – 290 K.

Figure S–7. Average cage occupancies for large (a) and small (b) cages as a function of pressure for a binary gas mixture containing $CH_4 + CO_2$ with the feed mole fraction of CH_4 equal to 0.4. GCMC data points are denoted with symbols (circles – CH_4 , triangles – CO_2). Confidence limits are smaller than the symbol sizes. Lines are guides to the eye only. Vertical dashed lines denote the hydrate equilibrium pressure for the particular temperature. Color code: magenta – 275 K and blue – 290 K.

Figure S–8. Efficiency of the gas mixture separation using hydrates as a function of pressure for a binary gas mixture containing $CH_4 + CO_2$ with the feed mole fraction of CH_4 equal to 0.4: (a) Split Fraction, and (b) Separation Efficiency. GCMC data points are denoted with symbols (circles – CH_4 , triangles – CO_2). Confidence limits are smaller than the symbol sizes. Lines are guides to the eye only. Vertical dashed lines denote the hydrate equilibrium pressure for the particular temperature. Color code: magenta – 275 K and blue – 290 K.

Figure S–9. Average cage occupancies for large (a) and small (b) cages as a function of pressure for a binary gas mixture containing $CH_4 + CO_2$ with the feed mole fraction of CH_4 equal to 0.2. GCMC data points are denoted with symbols (circles – CH_4 , triangles – CO_2). Confidence limits are smaller than the symbol sizes. Lines are guides to the eye only. Vertical dashed lines denote the hydrate equilibrium pressure for the particular temperature. Color code: magenta – 275 K and blue – 290 K.

Figure S–10. Efficiency of the gas mixture separation using hydrates as a function of pressure for a binary gas mixture containing $CH_4 + CO_2$ with the feed mole fraction of CH_4 equal to 0.2: (a) Split Fraction, and (b) Separation Efficiency. GCMC data points are denoted with symbols (circles – CH_4 , triangles – CO_2). Confidence limits are smaller than the symbol sizes. Lines are guides to the eye only. Vertical dashed lines denote the hydrate equilibrium pressure for the particular temperature. Color code: magenta – 275 K and blue – 290 K.