
Electronic Supplementary Information for:

Structural and rheological changes of lamellar liquid crystals as a result of compositional changes and added silica nanoparticles

Joshua B. Marlow, Matthew J. Pottage, Thomas McCoy, Liliana De Campo, Anna Sokolova, Toby D.M. Bell, and Rico F. Tabor*

Figure S1 (a) The average (from samples with all varieties of silica particles) interlamellar spacing of liquid crystal samples with constant surfactant/oil ratios (A, D, and E), taken from the SANS spectra, plotted as a function of the inverse volume fraction of the oil, *p*-xylene, and surfactant, Triton X-100. The least-squares fit is shown, corresponding to a constant surfactant/oil bilayer thickness of 60 Å. (b) The average (from samples with all varieties of silica particles) interlamellar spacing of liquid crystal samples with constant surfactant/water ratios (B, D, and F), taken from the SANS spectra, plotted as a function of the inverse volume fraction of the inverse volume fraction of water and the surfactant, Triton X-100. The least-squares fit is shown, corresponding to a constant surfactant, Triton X-100. The least-squares fit is shown, corresponding to a constant surfactant, Triton X-100. The least-squares fit is shown, corresponding to a constant surfactant, Triton X-100. The least-squares fit is shown, corresponding to a constant surfactant, Triton X-100. The least-squares fit is shown, corresponding to a constant surfactant, Triton X-100. The least-squares fit is shown, corresponding to a constant surfactant/water bilayer thickness of 71 Å.

Sample Identity	Interlamellar Spacing (Å)
A	78
A + 1% HB	74
A + 1% HP	73
A + 1% 20 nm HP	78
B	70
B + 1% HB	67
B + 2.5% HB	68
B + 1% HP	69
B + 2.5% HP	68
B + 1% 20 nm HP	71
B + 2.5% 20 nm HP	68
B, Mix	67
B + 1% HB, Mix	69 (7
B + 2.5% HB, Mix	67
B + 1% HP, Mix	65
B + 2.5% HP, Mix	65
B + 1% 20 nm HP, Mix	66
B + 2.5% 20 nm HP, Mix	69 67
B, Water B + 1% HB, Water	67 68
B + 1% HB, Water B + 2.5% HB, Water	69
B + 2.5% HB, Water B + 1% HP, Water	69
B + 1% HP, Water B + 2.5% HP, Water	67
B + 2.5% HP, water B + 1% 20 nm HP, Water	68
	69
B + 2.5% 20 nm HP, Water B, {d}-Xylene	69
$B + 2.5\%$ HB, {d}-Xylene	67
$B + 1\% 20 \text{ nm HB}, \{d\}$ -Xylene	66
$B + 2.5\%$ 20 nm HP, {d}-Xylene	65
$B + 2.5\%$ 20 mm m, fu_{f} -xylene B + 4% OA	73
B + 4% OA + 1% HB	73 76
B + 4% OA + 1% HB B + 4% OA + 1% HP	76
B + 4% OA + 1% 20 nm HP	74
B + 8% OA	79
B + 8% OA + 1% HB	77
B + 8% OA + 1% HB B + 8% OA + 1% HP	79
B + 8% OA + 1% 20 nm HP	80
C	108
C + 1% HB	157
C + 1% HP	108
C + 1% 20 nm HP	105
D	84
D + 1% HB	87
D + 1% HP	88
D + 1% 20 nm HP	90
E	97
E + 1% HB	98
E + 1% HP	99
E + 1% 20 nm HP	100
F	118
F + 1% HB	118
F + 1% HB, Water	112
F + 1% HB, Mix	115
F + 1% HP	119
F + 1% 20 nm HP	114
G	76
G + 1% HB	77
G + 1% HP	76
G + 1% 20 nm HP	77

 Table S1
 Interlamellar spacing of lamellar systems investigated via SANS. Refer to Tables 1 and 2 for sample identity information