Supporting information

High-pressure-assisted X-ray-induced damage as a new route for chemical and structural synthesis.

Egor Evlyukhin^{*†}, Eunja Kim[†], David Goldberger[†], Petrika Cifligu[†], Sarah Schyck[†], Philippe F. Weck[‡], Michael Pravica[†].

[†]Department of Physics and Astronomy, University of Nevada Las Vegas (UNLV), 89154-4002 Las Vegas, Nevada, USA.

[‡]Sandia National Laboratories, 87185 Albuquerque, New Mexico, USA

Fig. S1. XRD patterns of cesium oxalate hydrate at ambient conditions at 36 keV X-ray energy. a, Experimentally obtained XRD pattern in this work. b, XRD pattern of monoclinic crystal structure of cesium oxalate hydrate¹ with a space group C2/c and lattice parameters: a = 10.1127 Å, b = 6.6535 Å, and c = 11.3257 Å. Diffraction peaks are labeled with corresponding Miller indices.

Figure S2. Raman spectra of cesium oxalate hydrate used in our experiments. a, Unirradiated/virgin point in the sample. **b**, Damaged/irradiated spot on the same sample. Assignments of selected peaks are presented in Table S1.

Fig. S3. Simulated XRD patterns of the optimized CsO₂ structures in Pm-3m (Z=1), I4/mmm (Z=2), and Fm-3m (Z=4). Total and cohesive energies of three CsO₂ polymorphs are reported in Table S2.

Fig. S4. XRD patterns of cesium oxalate hydrate before (initial) and after 40 min (final) of X-ray irradiation at different energies.

Table S1. Selected vibrational bands and assignments of cesium oxalate hydrate after 40 min of X-ray irradiation at 0.3 GPa.

Peaks position, cm ⁻¹	Vibrational mode assignment (ref)	
749	Vibration of O_2^{2-} in Cs_2O_2 (ref. 2,3)	
837	Cesium hydrate impurities (ref. 2,3)	
1068	COO rocking(C-H bending out-of-plane)	
	in $CHCsO_2$ (ref. 4)	
1137	Vibration of O_2^- in CsO ₂ (ref. 2,3,5-7)	

Table S2. Calculated total and cohesive energies of three CsO₂ polymorphs.

Space group	Total energy (eV/atom)	Cohesive energy (eV/atom)
Pm-3m (Z=1)	-4.340	2.835
I4/mmm (Z=2)	-4.396	3.002
Fm-3m (Z=4)	-4.339	2.833

References

- 1 M. T. Weller, P. F. Henry, M. E. Light, Rapid structure determination of the hydrogen-containing compound Cs₂C₂O₄•H₂O by joint single-crystal X-ray and powder neutron diffraction, *Acta Crystallogr. B*, 2007, **63**, 426-432.
- 2 A. Band, A. Albu-Yaron, T. Livneh, H. Cohen, Y. Feldman, L. Shimon, R. Popovitz-Biro, V. Lyahovitskaya, R. Tenne, Characterization of oxides of cesium, *J. Phys. Chem. B*, 2004, **108**, 12360-12367.
- 3 J. C. Evans, The peroxide-ion fundamental frequency, J. Chem. Soc. D, 1969, 0, 682-683.
- 4 K. Ito, H. J. Bernstein, The vibrational spectra of the formate, acetate, and oxalate ions, *Can. J. Chem.*, 1956, **34**, 170-178.
- 5 J. Li, R. J. Davis, Raman Spectroscopy and dioxygen adsorption on Cs-loaded zeolite catalysts for butene isomerization, *J. Phys. Chem. B*, 2005, **109**, 7141-7148.
- 6 K. R. Nemade, S.A. Waghuley, Synthesis of stable cesium su-peroxide nanoparticles for gas sensing application by solution-processed spray pyrolysis method, *Appl. Nanosci.*, 2017, **7**, 753–758.
- 7 J. B. Bates, M. H. Brooker, G. E. Boyd, Raman spectra of O⁻² and O⁻³ ions in alkali-metal superoxides and ozonides, *Chem. Phys. Lett.*, 1972, **16**, 391-395.