Journal Name

ARTICLE TYPE

Cite this: DOI: 10.1039/xxxxxxxxx

Supplementary Information - Chemical and substitutional doping, anti-site and vacancy formation in monolayer AIN and GaN

Yelda Kadioglu,^{*a,b*} Fatih Ersan,^{*a,b*} Deniz Kecik,^{*b,c*} Olcay Üzengi Aktürk,^{*d,e*} Ethem Aktürk^{*f,e**} and Salim Ciraci ^{*b* \ddagger}

Received Date Accepted Date

DOI: 10.1039/xxxxxxxxxx

www.rsc.org/journalname

We present some extra datas related with the results in the main text as below.

- 1. Energy bands of patterned structures consisting of single adatom adsorbed to each periodically repeating (2×2) supercells of h-AlN and h-GaN. These patterned structures can attain either half-metallic bands as shown in Fig. 5 in the main text, or magnetic metals or magnetic semiconductors with different band gaps for different spin-directions as in this supplementary material (Fig.S1).
- 2. Stable hydrogenation geometries of h-AlN and h-GaN were described in Fig.9 in the main text. In this supplementary materials (Fig.S2) we present details about the specific hydrogenation geometries, which lead to dynamical instabilities.
- 3. The prime configurations of H_2 and O_2 dissociating at the

cation vacancy site were presented in Fig. 11 in the main text. In this supplementary material (Fig.S3-S6) we present other configurations of approach of H_2 and O_2 molecules, which lead to dissociation and physisorption.

- $^{\rm c}$ UNAM-Institute of Materials Science and Nanotechnology, University, Ankara 06800, Turkey
- ^d Department of Electrical and Electronic Engineering, Adnan Menderes University, 09100 Aydın, Turkey

* Fax: +902562135379; Tel: +902562130835; E-mail: ethem.akturk@adu.edu.tr ‡ E-mail: ciraci@fen.bilkent.edu.tr

^a Department of Physics, Adnan Menderes University, Aydın 09010, Turkey.

^b Department of Physics, Bilkent University, Ankara 06800, Turkey.

^e Nanotechnology Application and Research Center, Adnan Menderes University, Aydın 09010, Turkey

Fig. 1 Left panels: Energy bands of patterned structures of a single adatom (AI, C, N, Si, H) adsorbed to each periodically repeating (2×2) supercell of h-AIN monolayer. Zero of energy is set at the Fermi level. C, N and Si adatoms give rise to magnetic semiconductors, which have different band gaps for different spin-direction. Right panels: Same for h-GaN with adatoms AI/Ga, C, N, Si and As, each forming a patterned (2×2) structure.

Fig. 2 Various hydrogenation configurations of h-AIN and h-GaN which leads to dynamical unstabilities. Top panels: Hydrogenation geometry of h-AIN, phonon dispersion curves with imaginary frequencies, atom projected densities of states. Bottom panels: Same for h-GaN.

Fig. 3 Left: Top and side views of various configurations of H_2 approaching the cation vacancy site of h-AIN. Right: Optimized configurations with relevant structural parameters and energetics for physisorption or dissociation energies.

Fig. 4 Left: Top and side views of various configurations of O_2 approaching the cation vacancy site of h-AIN. Right: Optimized configurations with relevant structural parameters and energetics for physisorption or dissociation energies.

Fig. 5 Left: Top and side views of various configurations of H_2 approaching the cation vacancy site of h-GaN. Right: Optimized configurations with relevant structural parameters and energetics for physisorption or dissociation energies.

Fig. 6 Left: Top and side views of various configurations of O_2 approaching the cation vacancy site of h-GaN. Right: Optimized configurations with relevant structural parameters and energetics for physisorption or dissociation energies.