Electronic Supplementary Information:

Multiple states and roles of hydrogen in *p*-type SnS semiconductor

Zewen Xiao^{*a}, Fan-Yong Ran^a, Min Liao^a, Hidenori Hiramatsu^{a,b}, Keisuke Ide^{a,b}, Hideo Hosono^{a,b}, and Toshio Kamiya^{*ab}

^aMaterials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Email: zwxiao@mces.titech.ac.jp; kamiya.t.aa@m.titech.ac.jp

^bLaboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Fig. S1 400-atoms supercell ($5 \times 5 \times 2$ unit cells) used for modeling defects and impurities in SnS.

Fig. S2 TDS spectra for (a) m/z = 2 (corresponding to H₂) and (b) m/z = 34 (corresponding to H₂S) for as-deposited and H plasma exposed SnS films.

Fig. S3 XRD patterns of as-deposited and H plasma treated SnS films. The diffraction peak from Sn metal is indicated by the red vertical line.

Fig. S4 Optical absorption spectra of as-deposited and H plasma treated SnS films.

Table S1. Calculated formation enthalpies (ΔH in eV) of neutral intrinsic defects and H-related impurities.

	V_{Sn}	$V_{\rm S}$	Sn _i	\mathbf{S}_i	Sn _S	\mathbf{S}_{Sn}	H_i	H_{Sn}	[2H] _{Sn}	[3H] _{Sn}	H_{S}	[2H] _S	[3H] _S
Sn-poor	1.33	1.76	3.27	1.40	2.88	2.27	1.29	0.73	0.30	1.22	2.37	2.02	2.89
Sn-rich	2.01	1.08	2.59	2.09	1.51	3.64	1.29	1.41	0.98	1.90	1.68	1.33	2.20