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Table S I. Characteristics and surface collapse temperatures for two groups of np-Cu samples with

different system sizes. ρr (%): relative mass density; Asolid (× 104 nm2): surface area; Vsolid (×

104 nm3): solid volume; γ (nm−1): specific surface area; TC: collapse temperature of np-Cu; TM:

equilibrium melting temperature for defect-free bulk Cu.

# k ρr Asolid Vsolid γ TC/TM Dimension (nm3)

A1 1 58.19 0.45 2.44 0.18 1.00

A2 2 58.22 0.91 2.45 0.37 0.96

A3 4 58.11 1.89 2.42 0.78 0.93

A4 6 58.22 2.92 2.43 1.20 0.89

A5 8 58.07 4.08 2.45 1.67 0.81

Group I A6 10 58.70 5.11 2.40 2.13 0.70 36.15×36.15×36.15

A7 11 58.19 5.77 2.40 2.38 0.67

A8 12 58.18 6.36 2.42 2.63 0.59

A9 13 58.19 6.99 2.40 2.94 0.52

A10 14 58.22 7.58 2.42 3.13 0.48

B1 1 58.22 0.12 0.32 0.37 0.96

B2 2 58.68 0.25 0.32 0.77 0.93

B3 3 58.22 0.38 0.31 1.20 0.81

Group II B4 4 58.07 0.51 0.31 1.67 0.78 18.08×18.08×18.08

B5 5 58.70 0.64 0.30 2.13 0.67

B6 6 58.11 0.80 0.30 2.67 0.59

B7 7 58.22 0.95 0.30 3.14 0.52
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FIG. S1. (a) Temporal evolution of volume for np-Cu (#A1) at 1350 K and 1300 K (inset I) and

(b) np-Cu (#A10) at 800 K and 750 K (inset I).
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FIG. S2. The function of temperature for np-Cu collapse, TC/TM, of nanoporous Cu (Group I

and II) and Cu nanoparticles [1] in the simulations, and specific surface area, γ. The red solid

line denotes the function of TM and γ according to Eq. S11, respectively. The dotted and dash

lines denote the limit temperature of supercooling liquid and equilibrium melting temperature,

respectively.
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FIG. S3. Snapshots of dislocation structures in np-Cu #A8 before its collapse, during thermal

annealing.
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FIG. S4. The surface reconstruction for np-Cu #A8 during incremental heating. (a) Evolution of

surface atoms with different CN; and (b)–(e) Local surface configuration at (I) 300 K, (II) 500 K,

(III) 750 K , and (IV) 800 K (before melting), respectively.
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ANALYSIS OF MELTING IN NANOPOROUS CU BASED ON CLASSICAL NU-

CLEATION THEORY

To describe the nucleation of melting in nanostructures, the Gibbs-Thomson equation,

derived from classical nucleation theory (CNT) [2], is used. For a solid spherical nanoparticle

with the size of d, the change of Gibbs free energy during melting is expressed as [3, 4]

∆G = −πd3∆GV/6 + πd2σsl, (S1)

where σsl is the solid-liquid interfacial energy; ∆GV is Gibbs free energy difference per unit

volume between solid and liquid phase, and

∆GV = (1− TM,np/TM) ∆Hf/Vs, (S2)

where TM,np is the melting point of nanoparticle, TM is melting temperature of defect-free

bulk metals, ∆Hf is the latent heat of fusion, and Vs is the molar volume of solid phase.

When maximizing ∆G, Gibbs-Thomson equation, describing the relation of particle size and

corresponding melting temperature, is obtained [5, 6]

TM,np = TM

(
1− ζ

d

)
, (S3)

and

ζ = 4σslVs/∆Hf . (S4)

For a nanoparticle, σsl is size dependent [7, 8], and

σsl(d) =
2Svib(d)∆Hf (d)h

3VsR
. (S5)

Here R is the ideal gas constant, ∼8.314 J mol−1 K−1; h is the atomic diameter, ∼0.256 nm

for Cu; and Svib is the vibrational contribution of overall melting entropy of bulk crystals,

which is a weak function of d, and could be ignored as a first-order approximation [9], that

Svib(d) ≈ Svib(∞) ≈ 7.85 J mol−1 K−1 [1]. Substituting σsl(d) and Svib(d) into Eq. S4, we

have

ζ = 8hSvib(∞)/3R. (S6)

It reasonably matches the experimental data with d ≥ 10 nm [10, 11] as the crystal retains

its bulk values of σsl, ∆Hf and Svib [5, 12]. However, it fails for small-sized nanoparti-

cles, adopting nonspherical shapes [13–15] with a large γ. Here, a shape factor [16, 17],
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δ=ANP/ASN, where ASN is the surface area for a spherical nanoparticle and ANP is the sur-

face area of a nonspherical nanoparticle with the same volume as spherical nanoparticle, is

used to describe the shape effect of nanoparticles. For a solid nonspherical particle with size

of d and shape factor of δ, its surface area Asolid = δπd2. Combined with Eqs. S1–S4, the

melting temperature of nonspherical nanoparticle is

TM,np = TM

(
1− δζ

d

)
. (S7)

The melting temperature of np-Cu with the identical sized nanopores, should be equal to

that for the nanoparticle with the same size and shape. For a closed-cell np-Cu containing

N spherical nanopores with an identical size, d, we assume that Vsp,unit and Asp,unit are

the volume and surface area of a spherical nanopore, respectively. The system volume, solid

volume and total surface area of sphere-shaped nanopores in the samples are denoted as Vsys,

Vsolid, and Asp, respectively. Here NVsp,unit = Vsys − Vsolid, and NAsp,unit = Asp. It is noted

that Asp = Asolid, the surface area of solid, for the np-Cu with sphere-shaped nanopores.

Consequently, the size of spherical nanopore is

d =
6Vsp,unit
Asp,unit

=
6(Vsys − Vsolid)

Asp

. (S8)

As γ = Ssolid/Vsolid, ρr = Vsolid/Vsys, and Asp = Asolid, Eq. S8 can be rewritten as

d = µ/γ, (S9)

where µ = 6(1 − ρr)/ρr. For np-Cu containing N nonspherical nanopores, Asp < Asolid =

NAnp,unit, where Anp,unit is the surface area of a nonspherical nanopore. Then Eq. S9 can

be rewritten as

d = δµ/γ, (S10)

here δ is the shape factor, and δ = Asolid/Asp. For an open-cell np-Cu, it can be considered

to contain a nonspherical nanopore, whose size is d = 3
√

6(Vsys − Vsolid)/π. Thus the melting

temperature of open-cell np-Cu foams (TM,np) can be obtained

TM,np = TM (1− ζγ/µ) , (S11)

indicating that the melt of nanoporous is the function of specific surface area (γ), liquid-solid

interfacial energy (σsl in ζ), and mass density (ρr in µ). For our constructed np-Cu, ρr are

almost constant, ∼ 58.20%; and their sizes are almost the same, d ≈ 35.0 nm > 10 nm,

implying σsl is the bulk values.
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SUPPLEMENTARY ANIMATIONS (MOVIES S1-S4)

Movie S1 Dynamic processes of melting and collapse in nanoporous Cu #A1 during

thermal-annealing.

Movie S2 Evolution of surface melting and collapse in nanoporous Cu #A1 at 1350 K.

Movie S3 Dynamic processes of surface melting, collapse, recrystallization, and bulk melt-

ing in nanoporous Cu #A8 during thermal-annealing.

Movie S4 Evolution of surface melting, collapse and recrystallization in nanoporous Cu

#A8 at 800 K.
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