Supporting information for

Modified MXene : Promising electrode materials for constructing Ohmic contact with MoS₂ for electronic device application

Pei Zhao,[†] Hao Jin,[‡] Xingshuai Lv,[†] Baibiao Huang,[†] Yandong Ma^{†, *} and Ying Dai^{†, *}

[†]School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, 250100 Jinan, People's Republic of China

[‡]College of Physics and Energy, Shenzhen University, Shenzhen 518060, People's Republic of China.

*Corresponding author: <u>yandong.ma@sdu.edu.cn</u> (Y.M.); <u>daiy60@sina.com</u> (Y.D.)

Figure S1. Side views of six different stacking patterns of MoS₂/Ta₂CY₂(Y=F, OH) structures. The yellow, purples, green, white, red, orange and black balls are S, Mo, F, H, O, Ta and C atoms respectively.

Figure S2. The scatter diagram of binding energy for MoS_2/Ta_2C , MoS_2/Ta_2CF_2 and $MoS_2/Ta_2C(OH)_2$ systems respectively.

Figure S3. The charge difference between MoS_2 and $(a)Ta_2C$, $(b) Ta_2CF_2$, $(c)Ta_2C(OH)_2$. The yellow and green region represent electron accumulation and depletion, respectively.

Figure S4. Partial density of states (PDOS) of pure monolayer MoS_2 on the Ta_2C , Ta_2CF_2 and $Ta_2C(OH)_2$. The fermi level is set at zero energy.

Figure S5. The electron localization function (ELF) of (a) MoS_2/Ta_2C , (b) MoS_2/Ta_2CF_2 and (c) $MoS_2/Ta_2C(OH)_2$ systems.