Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Tl₂S: Metal-Shrouded Two-Dimensional Semiconductor

Shiying Shen, Yan Liang, Yandong Ma*, Wei Wei*, Baibiao Huang, Ying Dai*

School of Physics, State Key Laboratory of Crystal Materials, Shandong University,

Shandanan Str. 27, 250100 Jinan, P. R. China

*Corresponding Author: yandong.ma@sdu.edu.cn; <u>weiw@sdu.edu.cn</u>;

daiy60@sdu.edu.cn

Figure S1. The top (a) and side (b) views of the crystal structures of bulk $E-Tl_2S$. Band structures of (c) bulk $E-Tl_2S$ calculated using PBE and PBE+SOC. (d) Calculated absorption spectra for ML and BL X- Tl_2S (X=E, 1T, 2H) of the 2D structures at HSE06 level.

Figure S2. (a) Variation of total energy at 1 ps during ab initio MD simulation at a temperature of 300 K. And the insets show the corresponding snapshots at the end of MD simulation from side and top views. (b) Phonon band dispersion ML 1T-Tl₂S.

Figure S3. Orbit-projected band structures of (a) E-Tl₂S, (b) 2H-Tl₂S, and (c) 1T-Tl₂S near the Fermi level based on HSE06+SOC. The red (black) dots represents the electrical contribution of the Tl p orbitals (S p orbitals). (d) Isosurfaces of electron localization function of X-Tl₂S, with red and blue marking the accumulated and vanishing electron density, respectively.

Figure S4. Band structures of (a) ML $E-Tl_2S$, (b) ML $1T-Tl_2S$, (c) ML $2H-Tl_2S$, (d) BL $E-Tl_2S$, (e) BL $1T-Tl_2S$, and (f) BL $2H-Tl_2S$ calculated at PBE and PBE+SOC levels of theory. Solid (red) and dashed (green) curves denote bands with and without SOC, respectively.

System	HSE06+SOC		PBE+SOC	
	m_{ex}^{*}	m_{ey}^{*}	m_{ex}^{*}	m_{ey}^{*}
$2H-Tl_2S$	0.382	0.379	0.405	0.402
$1T-Tl_2S$	0.265	0.324	0.269	0.327

Table S1. Effective masses along the x and y Transport Directions in ML 2H-Tl₂S and ML 1T-Tl₂S.

Figure S5. The charge density distribution of the $E-Tl_2S$ (a), $2H-Tl_2S$ (b), and $1T-Tl_2S$ (c) at conduction band minimum (above) and valence band maximum (bottom).

Figure S6. The band structures of $2H-Tl_2S$ under different strain of (a) -3%, (b) -2%,

(c) -1%, (d) 1%, (e) 2% and (f) 3% with SOC.

Figure S7. The band structures of E-Tl₂S under different strain of (a) -3%, (b) -2%, (c) -1%, (d) 1%, (e) 2% and (f) 3% with SOC calculated using HSE06+SOC..

Figure S8. The band structures of $1T-Tl_2S$ under different strain of (a) -3%, (b) -2%,

(c) -1%, (d) 1%, (e) 2% and (f) 3% with SOC calculated using HSE06+SOC..

Figure S9. The band structures of $E-Tl_2S$ under different strain of (a) -3%, (b) -2%, (c)

-1%, (d) 1%, (e) 2% and (f) 3% with SOC.

Figure S10. The band structures of $1T-Tl_2S$ under different strain of (a) -3%, (b) -2%,

(c) -1%, (d) 1%, (e) 2% and (f) 3% with SOC.

Figure S11. The band structures of 2H-Tl₂S under different strain of (a) -3%, (b) -2%, (c) -1%, (d) 1%, (e) 2% and (f) 3% with SOC.