Supplementary Information for

Effect of oscillation dynamics on long-range electron transfer

in a helical peptide monolayer

Daisuke Matsushita, Hirotaka Uji and Shunsaku Kimura*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Tel: +81-75-383-2400 Fax: +81-75-383-2401 E-mail: shun@scl.kyoto-u.ac.jp

Materials and synthesis

All chemicals were purchased from commercial suppliers and used without further purification. Aib-Pro peptides were synthesized by a conventional liquid-phase method. All the intermediates were identified by ¹H NMR spectroscopy (Bruker DPX-400) and further confirmed by FAB mass spectrometry (JEOL JMS-HX110A), ESI mass spectrometry (Thermo Fischer Scientific Exactive Plus spectrometer), and MALDI mass spectrometry (Bruker ultraflexIII-KE). The purity of the intermediates was checked by thin-layer chromatography and that of the final compounds was checked by HPLC (TOSOH System 8020).

NMR: spectroscopy: hydrogen nuclear magnetic resonance spectroscopy

FAB: mass spectrometry: fast atom bombardment mass spectrometry

ESI: mass spectrometry: electrospray ionization mass spectrometry

MALDI: mass spectrometry: matrix assisted laser desorption Ionization mass spectrometry

HPLC: high-performance liquid chromatography

HATU: 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate

HOAt:1-hydroxy-7-azabenzotriazole

DIEA: N,N-diisopropylethylamine

DMF: N,N-dimethylformamide

COMU: (1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylaminomorpholinocarbenium hexafluorophosphate

Oxyma: ethyl (hydroxyimino)cyanoacetate

TEA: triethylamine

Scheme S1. Synthetic schemes of Aib-Pro peptides.

Scheme S2. Synthetic schemes of Aib-Pro peptides.

Boc-NH-(CH₂)₂-NH-CO-Fc (3)

Compound **1** (4.00 g, 17.3 mmol) and Compound **2** (3.33 g, 20.8 mmol) were dissolved in minimum amount of DMF. The mixed solution of COMU (11.1 g, 26.0 mmol) and Oxyma (3.69 g, 26.0 mmol) in minimum amount of DMF, and DIEA (12.1 ml, 69.3 mmol) were added in this order at 0 °C under Ar atmosphere. The reaction mixture was stirred at r.t. for 24 h, and the solvent was removed under reduced pressure. The residue was dissolved in chloroform, and the solution was washed with 4 wt% KHSO₄ aq. and sat. NaHCO₃ aq. for three times each. The organic phase was washed with brine, dried over anhydrous MgSO₄, then filtered and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, eluent: chloroform/methanol = 40/1 v/v). Yield: 6.10 g, 16.3 mmol (94%).

Boc-Aib-Pro-OMe (7)

Compound **5** (20.0 g, 98.4 mmol) and compound **6** (19.6 g, 118 mmol) were dissolved in minimum amount of DMF. The mixed solution of DCC (30.5 g, 148 mmol) and HOBt (19.9 g, 148 mmol) in minimum amount of DMF, and TEA (30.2 mL, 217 mmol) were added in this order at 0 °C. After stirring at r. t. for 15 h, the solvent was removed under reduced pressure and the residue was filtered with ethyl acetate. The filtrate was washed with 4 wt% KHSO₄ aq. and with sat. NaHCO₃ aq. for four times each. The organic phase was washed with brine, dried over anhydrous MgSO₄, then filtered and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, eluent: chloroform/ethyl acetate = 10/1 v/v). Yield: 26.0 g, 82.7 mmol (84%). ¹H NMR (400 MHz, CDCl₃, δ): 1.42 (s, 9H, BocC*H*₃), 1.56 (d, 6H, AibC^β*H*₃), 1.92 (m, 2H, ProC^γ*H*₂), 2.07 (m, 2H, ProC^β*H*₂), 3.71 (s, 3H, OMe), 3.66, 3.76 (m, 2H, Pro C^δ*H*₂), 4.37 (t, 1H, ProC^α*H*), 5.10 (s, 1H, urethane).

Boc-(Aib-Pro)₂-OMe (10)

The OMe group of compound 7 (10.0 g, 31.8 mmol) was deprotected by treating with 1 N NaOH aq. (165 mL) in the mixed solution of methanol (330 mL) and 1,4-dioxane (330 mL). The reaction mixture was stirred for 6 h. After the pH of the reaction mixture was adjusted to 7 by adding 1 N HCl aq., the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate and washed with 4 wt% KHSO₄ aq. once and with brine. The organic phase was dried over anhydrous MgSO₄, then filtered and concentrated under reduced pressure to obtain the deprotected product BP2OH. Compound 7 (11.6 g, 36.9 mmol) was dissolved in chloroform (10.0 mL) and the Boc group of compound 7 was deprotected by treating with 4 N HCl/1,4-dioxane (100 mL). The reaction mixture was stirred for 1 h. The solvent was removed under reduced pressure, the crude product was washed with disopropyl ether and concentrated under reduced pressure to obtain the deprotected product HP2M. BP2OH and HP2M were dissolved in minimum amount of DMF. The mixed solution of COMU (20.3 g, 47.4 mmol) and Oxyma (6.74 g, 47.4 mmol) in minimum amount of DMF, and DIEA (22.0 mL, 127 mmol) were added in this order at 0 °C under Ar atmosphere. The reaction mixture was stirred at r. t. for 24 h, and the solvent was removed under reduced pressure. The residue was dissolved in chloroform, and the solution was washed with 4 wt% KHSO₄ aq. and sat. NaHCO₃ aq. for four times each. The organic phase was washed with brine, dried over anhydrous MgSO₄, then filtered and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, eluent: chloroform/methanol = 40/1 v/v). Yield: 10.5 g, 21.2 mmol (67%). ¹H NMR (400 MHz, CDCl₃, δ): 1.36-1.61 (m, 21H, BocCH₃, AibC^{β}H₃), 1.82-2.20 (m, 8H, ProC^{γ}H₂, ProC^{β}H₂),

3.72 (s, 3H, OMe), 3.46-3.80 (m, 4H, Pro $C^{\delta}H_2$), 4.49, 4.58 (m, 2H, Pro $C^{\alpha}H$), 4.82 (s, 1H, urethane), 7.64 (s, 1H,

AibNH).

ESI-MS (m/z): $[M+H]^+$ calcd for C₁₅H₂₆N₂O₅, 497.30; found, 497.30.

Boc-(Aib-Pro)₂-NH-(CH)₂-NH-Fc (13)

The OMe group of compound 10 (500 mg, 1.01 mmol) was deprotected by treating with 1 N NaOH aq. (5.00 mL) in the mixed solution of methanol (10.0 mL) and 1,4-dioxane (10.0 mL). The reaction mixture was stirred for 8 h. After the pH of the reaction mixture was adjusted to 7 by adding 1 N HCl aq., the solvent was removed under reduced pressure. The residue was dissolved in chloroform and washed with 4 wt% KHSO₄ aq. once and with brine. The organic phase was dried over anhydrous MgSO₄, then filtered and concentrated under reduced pressure to obtain the deprotected product **BP4OH**. The Boc group of compound **3** was deprotected by treating with HCOOH (10 mL). The reaction mixture was stirred for 3 h. The solvent was removed under reduced pressure, the crude product was washed with diisopropyl ether and concentrated under reduced pressure to obtain the deprotected product HFc. BP4OH (130 mg, 269 µmol) and HFc (99.8 mg, 323 µmol) were dissolved in minimum amount of DMF. The mixed solution of COMU (173 mg, 404 µmol) and Oxyma (57.4 mg, 404 µmol) in minimum amount of DMF, and DIEA (197 µL, 1.13 mmol) were added in this order at 0 °C under Ar atmosphere, and the reaction mixture was stirred at r. t. for 24 h. The solvent was removed under reduced pressure. The residue was dissolved in chloroform, and the solution was washed with 4 wt% KHSO₄ aq. and sat. NaHCO₃ aq. for four times each. The organic phase was washed with brine, dried over anhydrous MgSO₄, then filtered and concentrated under reduced pressure. The residue was purified by column chromatography (Sephadex LH20, eluent: methanol). Yield: 45.6 mg, 61.5 µmol (23%).

¹H NMR (400 MHz, CDCl₃, δ): 1.36-1.61 (m, 21H, BocCH₃, AibC^βH₃), 1.82-2.20 (m, 8H, ProC^γH₂, ProC^βH₂),
3.46-3.80 (m, 8H,CH₂CH₂, Pro C^δH₂), 4.58 (m, 2H, ProC^αH), 4.21-4.95 (s, 9H, Fc), 5.51 (s, 1H, urethane), 7.22,
7.62 (t, 2H, NHEtNH), 7.83 (s, 1H, AibNH).

ESI-MS (*m*/*z*): [M+H]⁺ calcd for C₃₆H₅₂FeN₆O₇, 736.32; found, 736.32.

Boc-(Aib-Pro)₃-NH-(CH)₂-NH-Fc (15)

The Boc group of compound **13** was deprotected by treating with HCOOH (30.0 mL). The reaction mixture was stirred for 3 h. The solvent was removed under reduced pressure, the crude product was washed with diisopropyl ether and concentrated under reduced pressure to obtain the deprotected product **HP4Fc**. **BP2OH** (396 mg, 1.32 mmol) and **HP4Fc** (300 mg, 440 μ mol) were dissolved in minimum amount of DMF. The mixed solution of COMU (282 mg, 659 μ mol) and Oxyma (93.7 mg, 659 μ mol) in minimum amount of DMF, and DIEA (460 μ L, 2.64 mmol) were added in this order at 0 °C under Ar atmosphere, and the reaction mixture was stirred at r. t. for 24 h. The solvent was removed under reduced pressure. The residue was purified by column chromatography (Sephadex LH20, eluent: methanol). Then, the residue was further purified by column chromatography (silica gel, eluent: chloroform/methanol = 100/0, 40/1 then 10/1 v/v). Yield: 121 mg, 131 µmol (30%).

ESI-MS m/z: $[M+H]^+$ calcd for C₄₅H₆₆FeN₈O₉, 918.43; found, 918.43.

Lipoic acid-(Aib-Pro)₃-NH-(CH)₂-NH-Fc (P6)

The Boc group of compound **15** (80 mg, 87.1 mmol) was deprotected by treating with HCOOH (10 mL). The reaction mixture was stirred for 5 h. Then HCl/ethyl acetate (500 μ L) was added and stirred for 10 min. The solvent was removed under reduced pressure, and then residual HCOOH was treated by NH₃/methanol (10.0 mL). The

crude product was washed with diethyl ether and concentrated under reduced pressure to obtain the deprotected product **HP6Fc**. **HP6Fc** and lipoic acid (52.9 mg, 256 μ mol) were dissolved in minimum amount of DMF. The mixed solution of COMU (165 mg, 385 μ mol) and Oxyma (54.7 mg, 385 μ mol) in minimum amount of DMF, and DIEA (134 μ L, 769 μ mol) were added in this order at 0 °C under Ar atmosphere, and the reaction mixture was stirred at r. t. for 24 h. The solvent was removed under reduced pressure. The residue was dissolved in chloroform, and the solution was washed with 4 wt% KHSO₄ aq. and sat. NaHCO₃ aq. for three times each. The organic phase was washed with brine, dried over anhydrous MgSO₄, then filtered and concentrated under reduced pressure. The residue was purified by column chromatography (Sephadex LH20, eluent: methanol). Then, the residue was purified by column chromatography (silica gel, eluent: chloroform/methanol = 100/0, 30/1 then 10/1 v/v). Further, the residue was purified by column chromatography (Sephadex LH20, eluent: methanol), again. Yield: 41.4 mg, 41.1 μ mol (48%).

¹H NMR (400 MHz, CDCl₃, δ) 1.36-1.61 (m, 18H, AibC^{β}H₃), 1.65-2.55 (m, 22H, CH₂CH₂CH₂, SSCH₂CH₂CH, CH₂CC, ProC^{γ}H₂, ProC^{β}H₂), 3.08-3.95(m, 13H, SSCH₂CH₂CH, SSCH₂CH₂CH, CH₂CH₂, ProC^{δ}H₂), 4.58 (m, 3H, ProC^{α}H), 4.22-4.95(s, 9H, Fc), 7.32, 7.62(t, 2H, NHEtNH), 6.88, 7.98 (s, 3H, AibNH).

ESI-MS (m/z): [M+H]⁺ calcd for C₄₈H₇₀FeN₈O₈S₂, 1007.41; found, 1007.41.

Boc-(Aib-Pro)₄-OMe (14: BP8M)

Compound **10** (520 mg, 1.05 mmol) was dissolved in chloroform (1.00 mL) and the Boc group of compound **10** was deprotected by treating with HCOOH (15.0 mL). The reaction mixture was stirred for 3 h. The solvent was removed under reduced pressure, the crude product was washed with diisopropyl ether and concentrated under

reduced pressure to obtain the deprotected product **HP4M**. **BP4OH** (484 mg, 1.12 mmol) and **HP4M** (450 mg, 932 μ mol) were dissolved in minimum amount of DMF. The mixed solution of COMU (599 mg, 1.04 mmol) and Oxyma (199 mg, 1.40 mmol) in minimum amount of DMF, and DIEA (650 μ L, 3.73 mmol) were added in this order at 0 °C under Ar atmosphere, and the reaction mixture was stirred at r. t. for 24 h. The solvent was removed under reduced pressure. The residue was dissolved in chloroform, and the solution was washed with 4 wt% KHSO₄ aq. and sat. NaHCO₃ aq. for four times each. The organic phase was washed with brine, dried over anhydrous MgSO₄, then filtered and concentrated under reduced pressure. The residue was purified by column chromatography (Sephadex LH20, eluent: methanol), and the solution was removed under reduced pressure. Yield: 390 mg, 45.3 μ mol (49%).

¹H NMR (400 MHz, CDCl₃, δ): 1.36-1.61 (m, 33H, BocC*H*₃, AibC^{β}*H*₃), 1.82-2.20 (m, 16H, ProC^{γ}*H*₂, ProC^{β}*H*₂), 3.72 (s, 3H, OMe), 3.46-3.80 (m, 8H, ProC^{δ}*H*₂), 4.49, 4.58 (m, 4H, ProC^{α}*H*), 4.82 (s, 1H, urethane), 7.64, 7.83 (s, 3H, AibN*H*).

¹³C NMR (100 MHz, CDCl₃, δ): 23.87, 23.97, 24.67, 24.86, 25.10, 26.26, 26.55, 26.69 (AibC^βH₃), 25.71, 25.92, 26.08 (ProC^γH₂), 28.12, 28.65, 28.99, 29.19 (ProC^βH₂), 28.27 (BocC(CH₃)₃), 47.71, 48.02, 48.12, 48.55 (ProC^δH₂), 51.87 (OCH₃), 56.47, 56.55, 56.70 (AibC^α(CH₃)₂), 60.56, 62.13, 62.23, 62.56 (ProC^αH), 80.51 (BocC(CH₃)₃), 155.16 (BocC=O), 171.62, 172.07, 172.11, 172.40, 172.74, 172.77, 173.59 (AibC=O, ProC=O).

ESI-MS (m/z): $[M+H]^+$ calcd for $C_{42}H_{68}N_8O_{11}$, 860.50; found, 860.50.

Boc-(Aib-Pro)₄-NH-(CH)₂-NH-Fc (18)

The OMe group of BP8M was deprotected by treating with 1 N NaOH aq. (695 µL) in the mixed solution of

methanol (1.40 mL) and 1,4-dioxane (1.40 mL). The reaction mixture was stirred for 8 h. After the pH of the reaction mixture was adjusted to 7 by adding 1 N HCl aq., the solvent was removed under reduced pressure. The residue was dissolved in chloroform and washed with 4 wt% KHSO₄ aq. once and with brine. The organic phase was dried over anhydrous MgSO₄, then filtered and concentrated under reduced pressure to obtain the deprotected product **BP8OH**. **BP8OH** (60.0 mg, 70.8 µmol) and **HFc** (65.6 mg, 213 µmol) were dissolved in minimum amount of DMF. The mixed solution of COMU (45.5 mg, 106 µmol) and Oxyma (15.1 mg, 106 µmol) in minimum amount of DMF, and DIEA (74.0 µL, 425 µmol) were added in this order at 0 °C under Ar atmosphere, and the reaction mixture was stirred at r. t. for 24 h. The solvent was removed under reduced pressure. The residue was purified by column chromatography (Sephadex LH20, eluent: methanol) twice. The residue was further purified by column chromatography (silica gel, eluent: chloroform/methanol = 100/0, 40/1 then 10/1 v/v). Yield: 49.0 mg, 44.5 µmol

¹H NMR (400 MHz, CDCl₃, δ): 1.36-1.61 (m, 33H, BocC*H*₃, AibC^β*H*₃), 1.82-2.20 (m, 16H, ProC^γ*H*₂, ProC^β*H*₂), 3.46-3.80 (m, 12H,C*H*₂C*H*₂, ProC^δ*H*₂), 4.49, 4.58 (m, 4H, ProC^α*H*), 4.12-4.79 (s, 9H, Fc), 4.82 (s, 1H, urethane), 7.32, 7.62 (t, 2H, N*H*EtN*H*), 7.64, 7.83 (s, 3H, AibN*H*).

ESI-MS (m/z): [M+H]⁺ calcd for C₅₄H₈₀FeN₁₀O₁₁, 1101.54; found, 1101.53.

Lipoic acid-(Aib-Pro)₄-NH-(CH)₂-NH-Fc (P8)

The Boc group of compound **18** (60.0 mg, 54.4 μ mol) was deprotected by treating with HCOOH (10.0 mL). The reaction mixture was stirred for 5 h. Then HCl/ethyl acetate (500 μ L) was added and stirred for 10 min. The solvent was removed under reduced pressure, and then residual HCOOH was treated by NH₃/methanol (10.0 mL). The

crude product was washed with diethyl ether and concentrated under reduced pressure to obtain the deprotected product **HP8Fc**. **HP8Fc** (45.0 mg, 45.0 µmol) and lipoic acid (27.8 mg, 135 µmol) were dissolved in minimum amount of DMF. The mixed solution of HATU (74.1 mg, 202 µmol) and HOAt (27.5 mg, 202 µmol) in minimum amount of DMF, and DIEA (78.3 µL, 450 µmol) were added in this order at 0 °C under Ar atmosphere, and the reaction mixture was stirred for at r. t. 24 h. The solvent was removed under reduced pressure. The residue was purified by column chromatography (Sephadex LH20, eluent: methanol). The residue was dissolved in chloroform, and the solution was washed with 4 wt% KHSO₄ aq. and sat. NaHCO₃ aq. for four times each. The organic phase was washed with brine, dried over anhydrous MgSO₄, then filtered and concentrated under reduced pressure. The residue was purified by column chromatography (Sephadex LH20, eluent: methanol/chloroform 1/1 v/v). Then, the residue was purified by column chromatography (silica gel, eluent: chloroform/methanol = 100/0, 40/1 then 10/1 v/v), and further purified by column chromatography (Sephadex LH20, eluent: methanol). Yield: 35.3 mg, 29.7 µmol (66%).

¹H NMR (400 MHz, CDCl₃, δ): 1.36-1.61 (m, 24H, AibC^{β}H₃), 1.65-2.55 (m, 26H, CH₂CH₂CH₂, SSCH₂CH₂CH, CH₂CO, ProC^{γ}H₂, ProC^{β}H₂), 3.08-3.21 (m, 2H, SSCH₂CH₂CH), 3.25-3.40 (m, 1H, SSCH₂CH₂CH), 3.46-3.80 (m, 12H, CH₂CH₂, ProC^{δ}H₂), 4.49, 4.58 (m, 4H, ProC^{α}H), 4.12-4.79 (s, 9H, Fc), 7.32, 7.62 (t, 2H, NHEtNH), 6.88, 7.64, 7.83 (s, 4H, AibNH).

ESI-MS (m/z): [M+H]⁺ calcd for C₅₇H₈₄FeN₁₀O₁₀S₂, 1189.52; found, 1189.53.

Boc-(Aib-Pro)₆-OMe (20)

BP8OH (200 mg, 263 µmol) and HP4M (152 mg, 315 µmol) were dissolved in minimum amount of DMF. The

mixed solution of HATU (144 mg, 394 µmol) and HOAt (53.7 mg, 394 µmol) in minimum amount of DMF, and DIEA (206 µL, 1.18 mmol) were added in this order at 0 °C under Ar atmosphere. The reaction mixture was stirred at r. t. for 24 h, and the solvent was removed under reduced pressure. The residue was purified by column chromatography (Sephadex LH20, eluent: methanol/chloroform 1/1 v/v) twice. Yield: 58.9 mg, 27.6 µmol (61%). ¹H NMR (400 MHz, CDCl₃, δ): 1.36-1.61 (m, 45H, BocCH₃, AibC^{β}H₃), 1.82-2.20 (m, 24H, ProC^{γ}H₂, ProC^{β}H₂), 3.72 (s, 3H, OMe), 3.46-3.80 (m, 12H, ProC^{δ}H₂), 4.49, 4.58 (m, 6H, ProC^{α}H), 4.82 (s, 1H, urethane), 7.64 (s, 5H, AibNH).

ESI-MS (m/z): $[M+H]^+$ calcd for C₆₀H₉₆N₁₂O₁₅, 1225.72; found, 1225.73.

Boc-(Aib-Pro)₆-NH-(CH)₂-NH-Fc (22)

The OMe group of compound **20** (150 mg, 122 μ mol) was deprotected by treating with 1 N NaOH aq. (245 μ L) in the mixed solution of methanol (490 μ L) and 1,4-dioxane (490 μ L). The reaction mixture was stirred at 35 °C for 12 h. After the pH of the reaction mixture was adjusted to 7 by adding 1 N HCl aq., the solvent was removed under reduced pressure. The residue was dissolved in chloroform and washed with 4 wt% KHSO₄ aq. for three times and with brine. The organic phase was dried over anhydrous MgSO₄, then filtered and concentrated under reduced pressure to obtain the deprotected product **BP12OH**. **BP12OH** (100 mg, 82.5 μ mol) and **HFc** (76.4 mg, 248 μ mol) were dissolved in minimum amount of DMF. The mixed solution of HATU (136 mg, 371 μ mol) and HOAt (50.6 mg, 371 μ mol) in minimum amount of DMF, and DIEA (144 μ L, 825 μ mol) were added in this order at 0 °C under Ar atmosphere, and the reaction mixture was stirred at r. t. for 24 h. The solvent was removed under reduced pressure. The residue was purified by column chromatography (Sephadex LH20, eluent: methanol). Yield: 46.0 mg, 31.4 µmol (38%).

¹H NMR (400 MHz, CDCl₃, δ): 1.36-1.61 (m, 45H, BocCH₃, AibC^βH₃), 1.82-2.20 (m, 24H, ProC^γH₂, ProC^βH₂),
3.46-3.80 (m, 16H,CH₂CH₂, ProC^δH₂), 4.58 (m, 6H, ProC^αH), 4.21-4.95 (s, 9H, Fc), 5.51 (s, 1H, urethane),
7.22-8.00 (t, 7H, NHEtNH, AibNH).

ESI-MS (m/z): $[M+H]^+$ calcd for C₇₂H₁₀₈FeN₁₄O₁₅, 1465.75; found, 1465.75.

Lipoic acid-(Aib-Pro)₆-NH-(CH)₂-NH-Fc (P12)

The Boc group of compound **22** was deprotected by treating with HCOOH. The reaction mixture was stirred for 12 h. Then HCl/ethyl acetate (500 μ L) was added and stirred for 10 min. The solvent was removed under reduced pressure, and then residual HCOOH was treated by NH₃/methanol (10.0 mL). The crude product was washed with diethyl ether and concentrated under reduced pressure to obtain the deprotected product **HP12Fc**. **HP12Fc** (120 mg, 81.9 μ mol) and lipoic acid (50.7 mg, 246 μ mol) were dissolved in minimum amount of DMF. The mixed solution of HATU (135 mg, 368 μ mol) and HOAt (50.2 mg, 368 μ mol) in minimum amount of DMF, and DIEA (143 μ L, 819 μ mol) were added in this order at 0 °C under Ar atmosphere, and the reaction mixture was stirred at r. t. for 24 h. The solvent was removed under reduced pressure. The residue was purified by column chromatography (Sephadex LH20, eluent: methanol). Then, the residue was purified by column chromatography (Sephadex LH20, eluent: methanol). Yield: 73.8 mg, 47.5 μ mol (58%).

¹H NMR (400 MHz, CDCl₃, δ): 1.43-1.68 (m, 36H, AibC^β*H*₃), 2.19-2.49 (m, 34H, C*H*₂C*H*₂C*H*₂, SSCH₂C*H*₂CH, C*H*₂CO, ProC^γ*H*₂, ProC^β*H*₂), 3.10-3.90 (m, 19H, SSC*H*₂CH₂CH, SSCH₂CH₂C*H*₂C*H*₂C*H*₂C*H*₂, ProC^δ*H*₂), 4.58 (m, 3H,

ProC^α*H*), 4.22-4.95 (s, 9H, Fc), 7.42, 7.62 (t, 2H, N*H*EtN*H*), 6.91, 7.95-8.08 (s, 6H, AibN*H*).

MALDI-MS (*m/z*): [M+H]⁺ calcd for C₇₅H₁₁₂FeN₁₄O₁₄S₂, 1553.73; found, 1553.71.

Boc-(Aib-Pro)₈-OMe (23)

BP8OH (200 mg, 236 µmol) and **HP8M** (216 mg, 283 µmol) were dissolved in minimum amount of DMF and chloroform. The mixed solution of HATU (129 mg, 354 µmol) and HOAt (48.2 mg, 354 µmol) in minimum amount of DMF, and DIEA (173 mL, 992 µmol) were added in this order at 0 °C under Ar atmosphere. The reaction mixture was stirred at r. t. for 24 h, and the solvent was removed under reduced pressure. The residue was purified by column chromatograpy (Sephadex LH20, eluent: methanol/chloroform 1/1 v/v) Then, the residue was purified by column chromatography (Sephadex LH20, eluent: methanol) twice. Yield: 210 mg, 132 µmol (56%). ¹H NMR (400 MHz, CDCl₃, δ): 1.42-1.59 (m, 57H, BocC*H*₃, AibC^β*H*₃), 1.80-2.20 (m, 32H, ProC^γ*H*₂, ProC^β*H*₂), 3.72 (s, 3H, OMe), 3.63-3.86 (m, 16H, ProC^δ*H*₂), 4.51- 4.59 (m, 8H, ProC^α*H*), 4.97 (s, 1H, urethane), 7.63-8.02 (s, 7H, AibN*H*).

ESI-MS (m/z): $[M+H]^+$ calcd for $C_{78}H_{124}N_{16}O_{19}$, 1589.93; found, 1589.94.

Boc-(Aib-Pro)₈-NH-(CH)₂-NH-Fc (25)

The OMe group of compound **23** (72.0 mg, 45.3 μ mol) was deprotected by treating with 1 N NaOH aq. (190 μ L) in the mixed solution of methanol (380 μ L) and 1,4-dioxane (380 μ L). The reaction mixture was stirred at 35 °C for 12 h. After the pH of the reaction mixture was adjusted to 7 by adding 1 N HCl aq., the solvent was removed under reduced pressure. The residue was dissolved in chloroform and washed with 4 wt% KHSO₄ aq. for three times and with brine. The organic phase was dried over anhydrous MgSO₄, then filtered and concentrated under reduced pressure to obtain the deprotected product **BP16OH**. **BP16OH** (60.0 mg, 38.1 µmol) and **HFc** (31.0 mg, 114 µmol) were dissolved in minimum amount of DMF. The mixed solution of HATU (41.7 mg, 114 µmol) and HOAt (15.6 mg, 114 µmol) in minimum amount of DMF, and DIEA (59.7 µL, 343 µmol) were added in this order at 0 °C under Ar atmosphere, and the reaction mixture was stirred at r. t. for 24 h. The solvent was removed under reduced pressure. The residue was purified by column chromatography (Sephadex LH20, eluent: methanol). Yield: 32.7 mg, 17.9 µmol (47%).

¹H NMR (400 MHz, CDCl₃, δ): 1.36-1.61 (m, 57H, BocCH₃, AibC^βH₃), 1.82-2.20 (m, 32H, ProC^γH₂, ProC^βH₂),
3.46-3.80 (m, 20H, CH₂CH₂, ProC^δH₂), 4.58 (m, 8H, ProC^αH), 4.21-4.92 (s, 9H, Fc), 5.50 (s, 1H, urethane),
7.22-8.03 (t, 9H, NHEtNH, AibNH).

MALDI-MS (*m/z*): [M+H]⁺ calcd for C₉₀H₁₃₆FeN₁₈O₁₉, 1829.96; found, 1829.98.

Lipoic acid-(Aib-Pro)₈-NH-(CH)₂-NH-Fc (P16)

The Boc group of compound **25** was deprotected by treating with HCOOH. The reaction mixture was stirred for 12 h. Then HCl/Ethyl acetate (500 μ L) was added and stirred for 10 min. The solvent was removed under reduced pressure, and then residual HCOOH was treated by NH₃/methanol (10.0 mL). The crude product was washed with diethyl ether and concentrated under reduced pressure to obtain the deprotected product **HP16Fc**. **HP16Fc** (77.0 mg, 44.5 μ mol) and lipoic acid (27.6 mg, 134 μ mol) were dissolved in minimum amount of DMF. The mixed solution of HATU (73.4 mg, 200 μ mol) and HOAt (27.3 mg, 200 μ mol) in minimum amount of DMF, and DIEA (77.5 μ L, 445 μ mol) were added in this order at 0 °C under Ar atmosphere, and the reaction mixture was stirred at r. t. for 24 h. The solvent was removed under reduced pressure. The residue was purified by column chromatography

(Sephadex LH20, eluent: methanol). Then, the residue was purified by column chromatography (silica gel, eluent: chloroform/methanol = 100/0, 40/1 then 10/1 v/v) and further purified by column chromatography (Sephadex LH20, eluent: methanol). Yield: 38.4 mg, 21.4 µmol (48%).

¹H NMR (400 MHz, CDCl₃, δ): 1.44-1.68 (m, 48H, AibC^{β}H₃), 1.65-2.55 (m, 31H, CH₂CH₂CH₂, SSCH₂CH₂CH, CH₂CO, ProC^{γ}H₂, ProC^{β}H₂), 3.08-3.95 (m, 23H, SSCH₂CH₂CH, SSCH₂CH₂CH, CH₂CH₂, ProC^{δ}H₂), 4.58 (m, 8H, ProC^{α}H), 4.22-4.95 (s, 9H, Fc), 7.32, 7.62 (t, 2H, NHEtNH), 6.88, 7.98-8.08 (s, 8H, AibNH).

MALDI-MS (m/z): $[M+H]^+$ calcd for $C_{93}H_{140}FeN_{18}O_{18}S_2$, 1917.94; found, 1917.89.

Boc-(Aib-Pro)₁₂-NH-(CH)₂-NH-Fc (26)

BP8OH (162 mg, 191 μmol) and **HP16Fc** (110 mg, 63.6 μmol) were dissolved in minimum amount of DMF and chloroform. HATU (105 mg, 286 μmol), HOAt (39.0 mg, 286 μmol) and DIEA (111 μL, 636 μmol) were added in this order at 0 °C under Ar atmosphere, and the reaction mixture was stirred at r. t. for 24 h. The solvent was removed under reduced pressure. The residue was purified by column chromatography (Sephadex LH20, eluent: methanol) twice. Yield: 61.0mg, 23.8 μmol (46%).

MALDI-TOF (m/z): $[M+H]^+$ calcd for $C_{126}H_{192}$ FeN₂₆O₂₇, 2558.92; found, 2558.85.

Lipoic acid-(Aib-Pro)₁₂-NH-(CH)₂-NH-Fc (P24)

The Boc group of compound **27** (140 mg, 54.8 μ mol) was deprotected by treating with HCOOH. The reaction mixture was stirred for 12 h. Then HCl/ethyl acetate (500 μ L) was added and stirred for 10 min. The solvent was removed under reduced pressure, and then residual HCOOH was treated by NH₃/methanol (10.0 mL). The crude product was washed with diethyl ether and concentrated under reduced pressure to obtain the deprotected product

HP24Fc. **HP24Fc** (120 mg, 48.8 μ mol) and lipoic acid (30.2 mg, 146 μ mol) were dissolved in minimum amount of DMF. HATU (80.4 mg, 220 μ mol), HOAt (30.0 mg, 220 μ mol) and DIEA (85.0 μ L, 488 μ mol) were added in this order at 0 °C under Ar atmosphere, and the reaction mixture was stirred at r. t. for 24 h. The solvent was removed under reduced pressure. The residue was purified by column chromatography (Sephadex LH20, eluent: methanol). Then, the residue was purified by column chromatography (silica gel, eluent: chloroform/methanol = 100/0, 30/1, 20/1 then 10/1 v/v) and further purified by column chromatography (Sephadex LH20, eluent: methanol). Yield: 30.2 mg, 11.4 μ mol (23%).

¹H NMR (400 MHz, CDCl₃, δ): 1.45-1.65 (m, 72H, AibC^{β}H₃), 1.82-2.49 (m, 68H, CH₂CH₂CH₂, SSCH₂CH₂CH, CH₂CCH, CH₂CCH₂, ProC^{β}H₂), 3.10-3.87 (m, 31H, SSCH₂CH₂CH, SSCH₂CH₂CH, CH₂CH₂, ProC^{δ}H₂), 4.58 (m, 12H, ProC^{α}H), 4.22-4.95 (s, 9H, Fc), 7.42, 7.62 (t, 2H, NHEtNH), 6.91, 7.95-8.08 (s, 12H, AibNH).

MALDI-MS (m/z): [M+H]⁺ calcd for C₁₂₉H₁₉₆FeN₂₆O₂₆S₂, 2646.36; found, 2646.25.

High performance liquid chromatography (HPLC).

The purities of Aib-Pro peptides were confirmed by HPLC analysis. The measurements were carried out under following conditions (column: TOSOH TSKgel ODS-12OT, eluent: methanol/water 7/3 to 10/0 v/v gradient in ten min, column temperature: 40 °C, flow rate: 0.1 mL/min). The HPLC chromatogram are shown in Figure S1. Their purities were evaluated based on the peak areas and confirmed to be >95%.

Figure S1. HPLC chromatogram of synthesized Aib-Pro peptides.

Theoretical calculation.

The initial geometry of **BP8M** was generated, in which the dihedral angles of the peptide backbone were set to be $\omega = 180^\circ$, $\phi = -80^\circ$, and $\psi = -6^\circ$, respectively, to produce a 3_{10} helical structure. The first principle calculations of geometric optimization were carried out using the Gaussian 09 package¹ within the DFT framework under the ω B98XD/6-31G+ (d, p) level. The dihedral angles of the optimized peptide backbone were determined to be (ϕ, ψ) = (-50.4, -38.3), (-84.3, -1.9), (-49.9, -41.4), (-86.9, -5.0), (-52.7, -38.4), (-94.9, -0.1), (-60.1, -42.1) from the N terminal residue, to be confirmed as a β -bend ribbons spiral.² The molecular lengths of the peptides were calculated by the helix length and the length of the rest parts. The helix lengths were estimated with 2.0 Å per residue obtained by the optimized BP8M structure. Since the conformation of the parts other than the helix is unknown, the half of the length of the longest extended conformation was used as approximation. Then the length of lipoic acid moiety was determined to be 8 Å, and that of Fc moiety was to be 6 Å. The molecular length was determined to be 26 Å, 30 Å, 38 Å, 46 Å, 62 Å for P6, P8, P12, P16, P24, respectively. The thicknesses of the monolayers were estimated by (molecular length) $\times \cos \gamma$, where γ is the tilt angle of helical axis from the surface normal obtained by IRRAS, to be 14 Å, 17 Å, 26 Å, 31 Å, 46 Å for **P6**, **P8**, **P12**, **P16**, **P24**, respectively.

The cross-sectional area of the helical peptide was estimated to be 0.54 nm² (8.3 Å diameter). The limiting surface density of helical peptide is estimated as 30.8×10^{-11} mol cm⁻², assuming hexagonal packing with a tilt angle of 0°. The theoretical surface densities were estimated by (limiting surface density) × cos γ to be 16.7, 17.1, 21.0, 21.1, 22.6 × 10⁻¹¹ mol cm⁻² for **P6**, **P8**, **P12**, **P16**, **P24**, respectively.

The coordinates of the optimized geometries

Center Number	Atomic Symbol	Coordinates (Angstroms)		
		X	Y	Z
1	0	8.345	0.978	-0.586
2	С	7.314	0.147	-0.785
3	0	6.174	0.479	-1.088
4	С	8.146	2.429	-0.504
5	N	7.686	-1.135	-0.556
6	С	6.811	-2.279	-0.8
7	С	5.415	-2.109	-0.151
8	0	4.438	-2.563	-0.739
9	Н	8.654	-1.299	-0.327
10	С	6.635	-2.488	-2.309
11	С	7.469	-3.516	-0.171
12	Н	6.012	-3.361	-2.51
13	Н	7.62	-2.632	-2.762
14	Н	6.157	-1.617	-2.762
15	Н	6.83	-4.387	-0.325
16	Н	7.635	-3.391	0.903
17	Н	8.433	-3.713	-0.652
18	N	5.266	-1.527	1.074
19	С	3.925	-1.511	1.66
20	С	3.042	-0.35	1.194
21	0	1.886	-0.283	1.622
22	н	3.39	-2.423	1.389
23	С	4.194	-1.412	3.166
24	С	5.455	-0.55	3.222
25	С	6.279	-1.026	2.02
26	Н	4.391	-2.412	3.565
27	Н	3.343	-0.989	3.7
28	Н	6.005	-0.647	4.16
29	Н	5.192	0.506	3.092
30	н	6.97	-1.828	2.303
31	Н	6.864	-0.211	1.597
32	N	3.564	0.55	0.345
33	С	2.831	1.75	-0.069
34	С	1.395	1.44	-0.558
35	0	0.493	2.221	-0.269
36	Н	4.489	0.393	-0.047
37	С	2.75	2.714	1.122
38	С	3.588	2.425	-1.222
39	Н	2.245	3.637	0.836
40	Н	3.767	2.944	1.455

Table S1. The coordinates of the optimized geometry of BP8M

41	Н	2.193	2.262	1.945
42	Н	3.006	3.277	-1.58
43	Н	3.774	1.744	-2.054
44	Н	4.555	2.792	-0.868
45	Ν	1.149	0.359	-1.35
46	С	-0.208	0.186	-1.867
47	С	-1.146	-0.575	-0.926
48	0	-2.33	-0.705	-1.248
49	Н	-0.672	1.161	-2.034
50	С	0.005	-0.601	-3.166
51	С	1.2	-1.491	-2.823
52	С	2.097	-0.588	-1.971
53	Н	0.261	0.098	-3.969
54	Н	-0.892	-1.149	-3.458
55	Н	1.725	-1.871	-3.701
56	Н	0.872	-2.352	-2.231
57	Н	2.816	-0.048	-2.597
58	Н	2.658	-1.162	-1.237
59	N	-0.631	-1.09	0.202
60	С	-1.421	-1.928	1.105
61	С	-2.758	-1.267	1.527
62	0	-3.744	-1.982	1.685
63	Н	0.305	-0.817	0.491
64	С	-1.724	-3.261	0.408
65	С	-0.605	-2.195	2.378
66	Н	-2.304	-3.91	1.065
67	Н	-0.776	-3.747	0.157
68	Н	-2.3	-3.096	-0.504
69	Н	-1.193	-2.827	3.047
70	Н	-0.332	-1.277	2.9
71	Н	0.322	-2.719	2.122
72	N	-2.811	0.071	1.777
73	С	-4.06	0.642	2.278
74	С	-4.973	1.226	1.188
75	0	-6.032	1.749	1.519
76	Н	-4.64	-0.131	2.783
77	С	-3.575	1.745	3.223
78	С	-2.346	2.29	2.492
79	С	-1.715	1.059	1.823
80	Н	-3.293	1.295	4.181
81	Н	-4.35	2.492	3.402
82	Н	-1.64	2.798	3.153
83	Н	-2.656	3.007	1.726
84	Н	-0.87	0.672	2.399
85	Н	-1.344	1.31	0.83
86	N	-4.525	1.148	-0.086
87	С	-5.269	1.654	-1.241

88	С	-6.647	0.967	-1.403
89	0	-7.621	1.622	-1.764
90	Н	-3.699	0.589	-0.269
91	С	-5.473	3.168	-1.109
92	С	-4.447	1.369	-2.508
93	Н	-5.977	3.558	-1.994
94	Н	-4.491	3.643	-1.01
95	Н	-6.08	3.403	-0.235
96	Н	-4.986	1.758	-3.376
97	Н	-4.256	0.305	-2.656
98	Н	-3.479	1.877	-2.44
99	Ν	-6.758	-0.375	-1.22
100	С	-8.088	-0.966	-1.348
101	С	-9.11	-0.35	-0.403
102	0	-10.297	-0.298	-0.635
103	Н	-8.477	-0.812	-2.359
104	С	-7.87	-2.462	-1.032
105	С	-6.375	-2.674	-1.287
106	С	-5.762	-1.365	-0.799
107	Н	-8.518	-3.097	-1.639
108	Н	-8.093	-2.656	0.022
109	Н	-6.183	-2.804	-2.358
110	Н	-5.969	-3.537	-0.755
111	Н	-4.783	-1.178	-1.238
112	Н	-5.647	-1.374	0.29
113	0	-8.54	0.046	0.733
114	С	-9.363	0.75	1.659
115	Н	-8.679	1.116	2.423
116	Н	-10.116	0.083	2.086
117	Н	-9.857	1.585	1.158
118	С	7.619	2.975	-1.83
119	С	7.226	2.744	0.674
120	С	9.556	2.946	-0.237
121	Н	8.272	2.665	-2.65
122	Н	6.607	2.626	-2.035
123	Н	7.616	4.068	-1.79
124	Н	9.959	2.514	0.684
125	Н	10.224	2.689	-1.064
126	Н	9.537	4.034	-0.131
127	Н	6.23	2.32	0.529
128	Н	7.649	2.347	1.603
129	Н	7.125	3.828	0.782

Center Number	Atomic Symbol	Coordinates (Angstroms)		
		х	Y	Z
1	0	8.266	0.345	-0.569
2	С	7.05	-0.148	-0.792
3	0	6.007	0.489	-0.844
4	С	8.467	1.77	-0.254
5	N	7.086	-1.508	-0.925
6	С	5.919	-2.216	-1.432
7	С	4.722	-2.125	-0.479
8	0	3.581	-2.219	-0.923
9	Н	7.996	-1.936	-1.017
10	Н	5.567	-1.748	-2.357
11	С	6.267	-3.679	-1.698
12	Н	5.381	-4.205	-2.058
13	Н	6.618	-4.173	-0.786
14	Н	7.045	-3.755	-2.463
15	Ν	5.007	-1.942	0.828
16	С	4.007	-1.778	1.884
17	С	3.046	-0.612	1.562
18	0	1.925	-0.582	2.068
19	Н	5.983	-1.846	1.072
20	С	3.206	-3.068	2.082
21	С	4.756	-1.403	3.17
22	Н	2.464	-2.928	2.869
23	Н	3.888	-3.874	2.366
24	Н	2.688	-3.346	1.162
25	Н	4.039	-1.247	3.978
26	Н	5.334	-0.482	3.038
27	н	5.433	-2.213	3.462
28	N	3.503	0.375	0.764
29	С	2.658	1.504	0.421
30	С	1.387	1.105	-0.34
31	0	0.426	1.875	-0.327
32	н	4.405	0.298	0.303
33	н	2.283	1.958	1.343
34	С	3.45	2.535	-0.379
35	Н	2.799	3.374	-0.631
36	Н	3.843	2.098	-1.302
37	Н	4.293	2.907	0.21
38	N	1.383	-0.082	-0.977
39	С	0.202	-0.623	-1.654
40	С	-1.007	-0.669	-0.695
41	0	-2.154	-0.643	-1.139
42	н	2.201	-0.681	-0.916
43	С	-0.153	0.207	-2.891

Table S2. The coordinates of the optimized geometry of BA8M

44	С	0.516	-2.072	-2.051
45	Н	-1.031	-0.216	-3.382
46	Н	0.692	0.193	-3.586
47	Н	-0.373	1.24	-2.615
48	Н	-0.364	-2.516	-2.522
49	Н	0.793	-2.671	-1.179
50	Н	1.347	-2.095	-2.761
51	Ν	-0.753	-0.796	0.625
52	С	-1.839	-0.867	1.584
53	С	-2.728	0.384	1.606
54	0	-3.876	0.279	2.04
55	Н	0.199	-0.758	0.978
56	Н	-2.521	-1.67	1.288
57	С	-1.285	-1.144	2.98
58	Н	-2.108	-1.188	3.696
59	Н	-0.587	-0.36	3.286
60	Н	-0.753	-2.099	2.993
61	Ν	-2.206	1.536	1.144
62	С	-2.976	2.778	1.021
63	С	-4.215	2.591	0.109
64	0	-5.158	3.369	0.184
65	Н	-1.272	1.527	0.742
66	С	-3.414	3.292	2.395
67	С	-2.074	3.811	0.33
68	Н	-3.979	4.218	2.274
69	Н	-2.525	3.484	3.004
70	Н	-4.046	2.56	2.899
71	Н	-2.628	4.744	0.205
72	Н	-1.744	3.457	-0.651
73	Н	-1.185	4.003	0.938
74	Ν	-4.138	1.592	-0.803
75	С	-5.185	1.312	-1.763
76	С	-6.023	0.075	-1.401
77	0	-6.787	-0.417	-2.229
78	Н	-3.334	0.973	-0.816
79	Н	-5.878	2.159	-1.732
80	С	-4.596	1.163	-3.165
81	Н	-5.383	0.906	-3.875
82	Н	-3.842	0.369	-3.175
83	Н	-4.122	2.101	-3.466
84	Ν	-5.9	-0.404	-0.146
85	С	-6.626	-1.584	0.301
86	С	-8.118	-1.474	-0.05
87	0	-8.812	-2.414	-0.364
88	Н	-5.26	0.033	0.508
89	С	-6.042	-2.85	-0.335
90	С	-6.526	-1.652	1.833

91	Н	-6.577	-3.736	0.013
92	Н	-4.987	-2.928	-0.059
93	Н	-6.126	-2.798	-1.422
94	Н	-7.07	-2.526	2.201
95	Н	-6.94	-0.75	2.291
96	Н	-5.476	-1.731	2.131
97	0	-8.589	-0.237	0.145
98	С	-9.958	-0.038	-0.195
99	Н	-10.158	1.014	0.005
100	Н	-10.605	-0.676	0.413
101	Н	-10.117	-0.263	-1.252
102	С	8.027	2.633	-1.433
103	С	7.726	2.118	1.036
104	С	9.976	1.854	-0.052
105	Н	8.533	2.313	-2.348
106	Н	6.948	2.582	-1.585
107	Н	8.304	3.673	-1.237
108	Н	6.644	2.064	0.903
109	Н	8.025	1.441	1.842
110	Н	7.986	3.137	1.334
111	Н	10.295	1.202	0.766
112	Н	10.503	1.558	-0.962
113	Н	10.256	2.882	0.192

Reference.

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09*, (2009) Gaussian, Inc., Wallingford, CT, USA.
- 2. B. Diblasio, V. Pavone, M. Saviano, A. Lombardi, F. Nastri, C. Pedone, E. Benedetti, M. Crisma, M. Anzolin and C. Toniolo, *J Am Chem Soc*, 1992, **114**, 6273-6278.