Thermodynamic features and enthalpy relaxation in a metal-organic framework glass

Chao Zhou, a Malwina Stepniewska, a Louis Longley, b Christopher W. Ashling, b Philip A. Chater, c David A. Keen, d Thomas D. Bennett*b and Yuanzheng Yue*a, e

ESI: Figures S1-S4.

Fig. S1 Differences in enthalpy $\Delta H^{sl-x}(T)$ and entropy $\Delta S^{sl-x}(T)$ between the supercooled liquid and crystal in ZIF-62.

Fig. S2 Differences in the Gibbs free energy difference $\Delta G^{sl-x}(T)$ between the supercooled liquid and the crystal of ZIF-62, using a kJ g-atom⁻¹ basis (18.5 atoms per ZIF-62 molecule according to the formula). The $\Delta G^{sl-x}(T)$ of some alloys are also given as comparisons from literature, in which one atom is taken as per mol.

Fig. S3 Differences in the Gibbs free energy difference $\Delta G^{sl-x}(T)$ between the supercooled liquid and the crystal of ZIF-62, using a kJ g-BU⁻¹ basis (BU: building unit, referring to Imidazolate, benzimidazolate and Zn²⁺. Each ZIF-62 [Zn(Im)_{1.75}(bIm)_{0.25}] molecule has three BUs.) The $\Delta G^{sl-x}(T)$ of some alloys are also given as comparisons from literature, in which one BU is taken as per mol.

Fig. S4 Pair distribution function, D(r) of a_g ZIF-62 after melt quenching (red), annealed at 553 K with no duration (t_a =0) (purple), and annealed at 553 K for 72 hours (blue) in the region of 0~20 Å.