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S1 Edge and corner contributions 

As we discuss in the main text, cylindrical and spherical geometry is used to calculate the 

surface area contribution of edges and corners, respectively. We imagine the surface plane as 

lying on the surface of the atoms, which are considered as hard spheres with a diameter equal 

to the closest interatomic distance (da) in the crystal lattice.  

Surface area contribution of edges 

When two surfaces meet at an angle, an edge is formed, as is shown in Figure S1 (left panel). 

In our approach, the edge that connects two surfaces is taken to be a section of a cylinder, which 

fits exactly over the outermost surface of the edge atoms. The top and the bottom of this cylinder 

are formed by great circles on the corner atoms, perpendicular to both connecting surfaces. The 

length of the cylinder is thus equal to the distance between the cores of the corner atoms, i.e. l 

= da(s – 1), where da is the interatomic distance and s is the number of atoms in an edge, 

including the two corner atoms. 

   
Figure S1. Surface area contribution of edges and corners. The left panel shows a cross-section of an 

idealised edge, with the shells and cores of atoms in black. The curved surface in between the thick 

dotted lines and the red curves, which is attributed to the edge has an area of e∙l. The dihedral angle α is 

the angle between facets; β is needed for the length of e. The right panel shows a sphere with three great 

circles, enclosing the spherical triangle ABC, with internal angles ABC, ACB, and BAC. For a spherical 

triangle, the spherical excess is equal to Δ = ∠ABC + ∠ACB + ∠BAC – π. 

A facet ends where the surface is tangent with the shells of the atoms of the edge. Only the 

section of the cylinder that stretches between the two facets contributes to the surface area. If 

we call the length of the section e, then the cylindrical section has an area equal to e∙l. The 

length of e is determined by the dihedral angle α. As we see in the figure, the length of the red 

section is equal to β∙r, if β is in rad. From the figure, we can tell that β = 2π − 2∙½π − α = π − 

α; if, in addition, r = ½da, then the total surface area of the edge can be given as: e∙l = ½da
2(π − 

α)(s − 1). 
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Surface area contribution of corners 

A corner atom connects to several edges. It thus has several great circles around it, which 

from the bottom-circles of the edge cylinders. This leaves a spherical polygon on the shell of 

the corner atom, which is not covered by the surface area attributed to the edges or the planes. 

A spherical triangle is shown as an example in the right panel of Figure S1. 

The surface area of a spherical polygon, which we attribute to the corner, follows from the 

spherical excess (Δ), according to r2Δ.1 The spherical excess follows from the sum of the 

internal angles (∑θk) and the number of corners in the polygon (p), according to Δ =∑θk – π (p 

– 2). The internal angles (θk) of the spherical polygon on the corner atoms, which is formed by 

the great circles perpendicular to the adjoining edges, follow from the angles between these 

edges (ηk) in the same way that β follows from α (see above), i.e. θ = π – η. It follows that ∑θk 

= pπ – ∑ηk and the spherical excess can thus be expressed as Δ = 2π – ∑ηk. The area of a corner 

is thus equal to ¼da
2(2π – ∑ηk) 

The angles between edges η are readily observed from the surface facets, and are limited to 

½π, ⅓π, and ⅔π for square, triangular, and hexagonal facets respectively. An overview is given 

in Table S1. Interestingly, the summed contribution of all corners of geometrically shaped 

particles treated here is invariably equal to da
2π. 

Table S1. Overview of geometrical properties of corner atoms on regularly shaped particles in the FCC 

crystal lattice.  

a Number of times the jth corner is found in a particular particle geometry 
b Number of facets connecting at a corner, where η is the angel between the sides of a 

triangular () or hexagonal () [111] facet, or a square () [100] facet.  
c Spherical excess calculated using ∆ = ∑θk – π (p – 2), with p = [111]+ [111] + 

[100]  or using ∆ = 2π – ∑ηk  

Particle geometry 

 

zj
a [111]b 

η = ⅓π 

[111]b 

η = ⅔π 

[100]b 

η = ½π 

Δc 

Icosahedron 12 5   1/3 π 

Truncated decahedron{ 
2 5   1/3 π 

10 2  2 1/3 π 

Octahedron 6 4   2/3 π 

Cuboctahedron 12 2  2 1/3 π 

Truncated octahedron 24  2 1 1/6 π 
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S2 Tolman for non-spherical particles 

The classical Tolman equation has been derived for spherical particles, however, an adapted 

version for faceted and spheroidal particles can be obtained with relative ease. To demonstrate 

this, we will first consider a number of crucial steps in the derivation of the Tolman equation.  

An important intermediate result in the derivation of the Tolman equation is that the change 

in surface tension is proportional to the change in pressure difference between the two phases, 

according to:2 

𝑑𝛾 = −
𝛤

𝜌1 − 𝜌2
𝑑(𝑝1 − 𝑝2)                                                                                                                (𝑆1) 

in which γ is the surface tension (J m−2), Γ is the excess adsorption (mol m−3), and ρ1 and ρ2 are 

the bulk densities (mol m−3) in the first and the second phase considered, respectively, while p1 

and p2 are the pressures (J m−3) in said phases.  

Using the Laplace equation, the pressure difference is expressed in terms of surface tension 

γ and radius r (p1 − p2 = 2γ/r), leading to: 

𝑑𝛾 = −
𝛤

𝜌1 − 𝜌2
𝑑 (

2𝛾

𝑟
)                                                                                                                      (𝑆2) 

If the term Γ/(ρ1 − ρ2) is equated to the Tolman length δ (which is valid as long as δ << r), the 

above equation can be solved to yield the Tolman equation in the well-known form given in the 

main text (eq 6).2 

The Laplace equation 

Spherical particles. The Laplace equation in its traditional form is valid for spherical 

particles. There are several ways to derive the Laplace equation. According to one of the 

described derivations,3 the Laplace equation can be written as: 

𝑝1 − 𝑝2 = 𝛾
𝑑𝐴

𝑑𝑉
                                                                                                                                     (𝑆3) 

The difference in pressure depends on the change of surface area (dA) with change of volume 

(dV) at a given surface tension . In the above equation, the derivatives dA and dV can be related 

to the radius r of a spherical particle, i.e. dA/dr and dV/dr, and with A = 4πr2 and V = 4/3∙πr3, 

the traditional formulation of the Laplace equation can be obtained. 

Facetted particles. In our approach, Laplace expressions for non-spherical faceted particles, 

will be obtained by expressing surface area as a function of an equivalent radius. For this, we 

use the relationship between surface area and volume, which is well-defined for faceted 

particles. Formulae for surface area and volume, as a function of edge-length l, are given in 

Table S2 for selected particle geometries. 
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Table S2. Surface area and volume of a selection of faceted particles as a function of edge-length l.  

Particle geometry Surface area Volume ca 

Cuboctahedron (6 + 2√3)𝑙2  
5

3
√2𝑙3  1.105 

Octahedron 2√3𝑙2  
1

3
√2𝑙3  1.183 

Truncated octahedron (6 + 12√3)𝑙  8√2𝑙3  1.099 

Icosahedron (5√3)𝑙2  
5

12
(3 + √5)𝑙3  1.065 

Truncated decahedron (5 +
5

2
√3) 𝑎2  

5

4
√5 + 2√5 (1 +

2

3
√1 −

2

5−√5
) 𝑎3  1.100 

a Ratio between surface area of the faceted particle and a spherical particle of equal 

volume 

Oblate and prolate spheroids. For spheroidal particle, a similar shape factor can be 

established. The surface area for oblate and prolate spheroids with an equatorial radius a and a 

polar radius b can be calculated using the following equations: 

𝐴𝑜𝑏𝑙𝑎𝑡𝑒 = 2𝜋𝑎2 +
2𝜋𝑏2

√1 − 𝑏2/𝑎2
∙ 𝑎𝑟𝑐𝑡𝑎𝑛ℎ (√1 −

𝑏2

𝑎2
)                                                           (𝑆4𝑎) 

𝐴𝑝𝑟𝑜𝑙𝑎𝑡𝑒 = 2𝜋𝑎2 +
2𝜋𝑎𝑏

√1 − 𝑎2/𝑏2
∙ 𝑎𝑟𝑐𝑠𝑖𝑛 (√1 −

𝑎2

𝑏2
)                                                             (𝑆4𝑏) 

The volume for both types of spheroidal particles is equal to 4/3∙πa2b. Using the above 

formulae, a shape factor can be coupled to the ratio between the equatorial and the polar radius 

a/b. This is shown in Figure S2.  

 
Figure S2. Shape factor c for oblate and prolate spheroidal particles, plotted against the ratio a/b 

between the equatorial and polar axis. Below a ratio of 1 particles are oblate, above they are prolate. The 

vertical dotted lines are positioned at a/b ratios of 0.5 and 2, we expect that most nanoparticle particles 

will fall in between these limits. 
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Generalized Tolman equation  

Using the shape factor c, the Laplace equation for faceted and spheroidal particles becomes 

∆p = 2cγ/r. This adapted Laplace equation can be readily used in the derivation of the Tolman 

equation, leading to:  

𝛾𝑟 =
𝛾∞

1 + 2𝑐𝛿 𝑟𝑠⁄
= 𝛾∞ (1 +

2𝑐𝛿

𝑟𝑒 − 𝛿
)

−1

                                                                                           (𝑆5) 

The effect of the introduction of c in the Tolman equation depends on the value of the Tolman 

length and the particle size. For the Tolman lengths that we derived for metallic nanoparticles 

in this work, the effects are very limited for particles larger than ~2 nm as shown in Figure S3. 

  
Figure S3. The deviation (%) of the adapted Tolman equation (eq S4) from the classical Tolman 

equation (eq 6) for octahedral, cuboctahedral, and icosahedral particles (from top to bottom). The lines 

are calculated using a Tolman length of −0.036 nm, which is the value that we will later establish for 

cuboctahedral gold nanoparticles (see Results and Discussion). The horizontal dotted represents a 

deviation of 1%; the vertical dotted line represents the equimolar diameter de for a single gold atom, 

calculated using equation 1 (main text). 

Concluding remarks 

Above we have treated shapes with sharp corners and edges. However, the physical surface 

area that we formulate in this work explicitly includes the surface area of rounded edges end 

corners. Given the limited difference between a spherical Tolman approach and a faceted 

Tolman approach, we feel that such details can be left untreated. 

We are also aware, if the surface of tension is located at a uniform distance from the 

equimolar surface, their geometries are not necessarily identical for non-spherical particles. 

This is the case for cuboctahedra, truncated octahedra and truncated decahedra, as well as for 

oblate and prolate particles. For applications of equation S5 in this work, the shape change is 

minor. However, for very small, non-spherical water droplets, this may be relevant. 
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S3 How surface energy depends on the radius of tension 

In the main text we explain that upon choosing a radius of tension rs, a surface energy value 

can be calculated in two ways. Thermodynamically, using the Tolman equation, and atomically, 

by scaling the excess particle energy to the surface area. Crucial for determining the position of 

the surface of tension is that both calculated surface energy values depend differently on the 

chosen value for the radius of tension rs. This is illustrated in Figure S4. Because of the opposite 

dependence on rs, the calculated lines intersect; this is universally seen. The true radius of 

tension rs and size-dependent surface energy γr are found where the lines intersect, i.e. at the rs 

value where both methods yield the same surface energy. 

 
Figure S4. Relation between surface energy and the radius of tension rs for the thermodynamic 

(dashed line) and the atomic (dotted line) method of calculating surface energy. Lines have 

been calculated for a spherical particle with an equimolar radius re of 2 nm, and an excess 

particle energy ∆ES of 81.8 aJ. The consistent value of rs and the corresponding surface energy 

γr are found where the lines cross, as indicated with a red dot. Also indicated is the planar surface 

energy, γ∞. The difference between re and rs is the Tolman length given with the horizontal 

arrow.  
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S4 Nucleation of water cavities 

Very recently, the nucleation of cavities in water has been studied with state-of-the-art 

advanced MD simulations.4 The Gibbs free energy of formation of cavities in water was 

calculated as a function of cavity size for negative pressures p in the range of −100 to −200 

MPa. These simulated Gibbs free energy curves are given in Figure S5 with symbols. If the 

cavity volume is very small, energy is needed to enlarge it, while for large volumes, Gibbs free 

energy is released at enlargement of the cavity. In the latter case, the cavity can grow 

spontaneously. However, if the cavity is smaller than a critical value, it may spontaneously 

collapse. On the top of the energy barrier, the critical particle is in an instable state. 

 
Figure S5. Gibbs free energy of cavity formation in water as a function of the equimolar cavity diameter 

for various values for the applied negative pressure. The symbols are values of Menzl et al.4 that were 

obtained with advanced MD simulations. The lines have been calculated with homogeneous nucleation 

theory using a size-dependent surface tension (eq S6) according to the Tolman approach with a mean 

shape fatcor of c = 1.1 (see text). The curves were calculated using the Tolman length as the only 

adjustable parameter leading to  = 0.067 nm. 

The generated MD data have been described by Menzl et al.4 with classical nucleation theory 

allowing the surface tension to be size-dependent by introducing a Tolman length.4 The authors 

applied an expression that is based on the surface of tension with corresponding radius (rs), 

whereas in their data treatment, the calculated radius is based on the equimolar volume, making 

it equivalent to re. This principal difference is the cornerstone of the thermodynamic treatment 

of Tolman. It implies that the radius in their expressions is to be replaced by re − , where 

appropriate. The proper expression to be applied in critical nucleation theory is: 

∆𝐺(𝑟𝑒) =   4𝜋𝑐(𝑟𝑒 − )2  
𝛾∞

1 + 2𝑐 / (𝑟𝑒 −  )
 + 

4𝜋𝑟𝑒
3

3
 𝑝                                                           (𝑆6) 
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in which c is the shape factor for deviation from the perfect sphere. In equation S5, the first 

term gives the contribution of surface Gibbs free energy and the second term gives the 

contribution of the formation of the water cavity.  

A second point is that Menzl et al.4 have made the surface tension ∞ of water in the planar 

limit to an adjustable parameter, in order to get an excellent fit. However, it leads to a 

significantly higher value for the surface tension ∞ of water than found experimentally. 

Considering the planar surface tension of water ∞ as an adjustable parameter is doubtful since 

it may be assume that the advanced MD model applied is able to reproduce the experimental 

value correctly. 

In Figure S5, the given lines have been calculated with the above expression for 

homogeneous nucleation. In our treatment of their data, a good fit could not be achieved when 

the Tolman length  is considered as the only adjustable parameter. The simulation experiments 

of Menzl et al.4 showed that the particles shape is non-spherical. If the shape factor c is 

introduced and used as an adjustable parameter, an excellent fit is found for the full data set, 

with only minor deviations, as is shown in Figure S5. The data is best described with a size 

independent shape factor of c = 1.1 and  = +0.067 nm. The Tolman length is much lower than 

the high value found by Menzl et al.4 ( = +0.195 nm) and closer to the value estimated by 

Tolman  = 0.1 nm for spherical water droplets and recently found with simulations ( ~ +0.05-

0.10 nm).5 

The same shape factor is taken for all sizes. Menzl et al.,4 showed that the particles vary in 

shape, and in addition, the surfaces of the droplets are quite irregular. By extracting the surface 

areas and volumes from the MD results, one may in principle calculate the shape factors 

involved. However, this is beyond the scope of the present paper.  
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S5 Equimolar surface and Tolman lengths 

The equimolar surface  

The equimolar surface is defined as the surface within which all the mass would be located 

in case of a uniform density up to the equimolar surface. While this is fairly straightforward for 

spherical particles, it is less so for crystalline particles with a polyhedral shape. Rather than 

establishing an equimolar radius, we will establish a position of the equimolar radius with 

respect to the center of the surface atoms.  

We assume that the mass of an atom is distributed homogeneously within the atomic radius, 

which we define as half the interatomic distance, i.e. ra = ½ da. Figure 4 (main text) shows that 

atoms in the crystal structure overlap. At the surface, the density is thus lower. It follows that 

the equimolar surface is located between the cores and the outer shell of surface atoms.  

The equimolar surface is located such that the missing sections between surface atoms can 

be exactly filled in with the sections extending over the equimolar surface. The red dotted lines 

in Figure 4 of the main text are located exactly between atomic layers, and the overlapping 

sections from different layers (colored) have exactly the same size. The exact location of the 

equimolar surface thus follows from the distance between atomic layers.  

From the atomic positioning in the FCC lattice, it may be calculated that the distance between 

[100] and [111] planes is equal to √½ da, and √⅔ da, respectively. The equimolar surface is 

located at half that distance, i.e. √½ ra , and √⅔ ra, from the centers of surface atoms. 

Specific Tolman lengths for crystal faces 

Above we have defined the position of the equimolar surface relative to the centers of surface 

atoms. In a similar fashion, we can calculate the positions of the surfaces of tension will also 

be defined, we can calculate the Tolman length.  

In our definition, the physical surface (see Figure 2c, main text) is placed on top of the outer 

shells of surface atoms. In other words, the physical surface is located at a distance of ra from 

the centers of surface atoms. This leads to a Tolman length of (√½ – 1) ra for the [100] face and 

(√⅔ – 1) ra for the [111] face, leading to δ100 = –0.146 da and δ111 = –0.092 da.  

Method A (see Figure 2a, main text) places the surface of tension at the center of the surface 

atoms. Above we have thus given the position of the equimolar surface relative to this surface 

of tension, leading to δ100 = 0.354 da and δ111 = 0.408 da. 

For the surface of tension defined in Method B, as given in Figure 2b of the main text, the 

position is more complex to calculate. Moreover, the location may vary for particles of different 

shapes, depending on the number of edges. We will here demonstrate the calculation for 

cuboctahedral particles.  

To obtain the distance between the surface of Method B and the center of surface atoms, we 

calculate the full height of a particle in terms of edge-length (s), which in this method is taken 

as s da. For a cuboctahedron, the distance between two opposite [100] faces is equal to the 

diagonal of the [100] face, or √2 s da. The distance between the cores of two opposite [100] 

faces is equal to the diagonal of a [100] face defined according to method A, i.e. √2 (s – 1) da. 
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It follows that the distance of the surface of tension from method B from the cores is equal to 

½√2 da or √½ da at the [100] face.  

Using the same principles, though following a much more complicated route, it can be 

calculated that the distance between the surface of tension and the centers of surface atoms is 

equal to √⅔·da at the [111] face. For cuboctahedra, the Tolman length for the surface of tension 

defined in method B is thus equal to √½ ra – √½ da for the [100] face and √⅔ ra – √⅔ da for the 

[111] face, leading to δ100 = –0.354 da and δ111 = –0.408 da.  
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S6 Interpretation of additional excess energy data  

Size dependency of surface energy of other metallic nanoparticles  

In the main text, we identified the physical surface as thermodynamically consistent with the 

surface of tension. We also showed that with scaling to this surface, the size dependency for 

surface energy (J m−2) is greatly reduced with respect to trends previously published in 

literature.6, 7 A low size-dependency of surface energy is universally observed when 

computational energy data are scaled to the physical surface area, as shown with additional data 

in Figure S6, for a variety of particle shapes.  

 
Figure S6. Surface energy data for noble metal  nanoclusters in a variety of particle shapes scaled to the 

physical surface area. Computational data were taken from Liu et al.8 (DFT-LDA, silver: squares), 

Barnard and Curtis9 (DFT-GGA, gold: spheres), Medasani et al.6 (DFT-GGA, silver: triangles), and 

Oliveira et al.10 (SCC-DFTB, silver: diamonds). Tolman functions were generated (dotted lines) using 

restricted assumptions, which are described below.  

Consistency of the physical surface for other metallic nanoparticles 

Liu et al.8 calculated planar surface energies for the silver [111] face and [100] face, being 

0.55 and 0.69 eV atom−1 respectively. Expressing the surface area of the [111] and [100] face 

per atom, being respectively 0.072 nm2 and 0.083 nm2, yields γ[111] = 1.22 J m−2 and γ[100] = 

1.33 J m−2. Using da,Ag = 0.28911 and Table S3, we find a surface tension γ∞ = 1.22 J m−2 and a 
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Tolman length δ = −0.027 nm δ for icosahedral silver clusters. As no macroscopic surface 

energy data are available in the works by Medasani et al.6 and Oliveira et al.,10 a macroscopic 

surface energy of γ∞ = 0.93 J m−2 was fitted to the data for silver cuboctahedra.6, 10 

The model lines for the AuNP have been calculated using a calculated guess of the surface 

energy for the planar crystal faces γ[100] and γ[111], as these lack in the paper of Barnard and 

Curtis.9 We found that the surface energy of the two silver truncated octahedra with N = 38 and 

N = 79 atoms from Liu et al.8 is between 1.08 and 1.09 times higher than the surface energy of 

the identically shaped gold truncated octahedra from Barnard and Curtis.9 Assuming that the 

same ratio is valid for the planar crystal faces, we get the approximated values of γ[100] = 1.23 J 

m−2 and γ[111] = 1.12 J m−2 for gold, which we applied. Using da,Au = 0.28811 and Table 3, we 

can generate values for the surface of tension γ∞ and the Tolman length δ for the different 

shapes. For icosahedral gold clusters, γ∞ = 1.12 J m−2 and δ = −0.026 nm; for octahedral gold 

clusters, γ∞ = 1.12 J m−2 and δ = −0.026 nm; and for cuboctahedral gold clusters, γ∞ = 1.19 J 

m−2 and δ = −0.036 nm. 

Overall, the data description by the Tolman equation is good. Individual data points may 

deviate because of uncertainties in the energy calculation or due to the intricacies in energetics 

of nanocrystals. Considering the planar surface energy values are the primary input parameter, 

our method of estimation performs well.  
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S7 Truncated octahedra 

The truncated octahedra shown in Figure 7a  of the main text are non-regular, meaning they 

have two different edge-lengths.7 As such, these particles are not covered by the general 

formulas in Table 1 of the main text. We provide dedicated formulae for these particles here.  

If s1 is the number of atoms in the edge between two [111] faces, and s2 denotes the edge 

between a [111] and a [100] face, then [111] and [100] facets have the following surface areas: 

𝐴𝑓,[111] = √3 ((𝑠1 − 1)(𝑠2 − 1) +
(𝑠1 − 1)2+(𝑠2 − 1)2

4
)                                                         𝑆7𝑎 

𝐴𝑓,[100] = (𝑠2 − 1)2                                                                                                                               𝑆7𝑏 

The surface area of edges and corners can be found using the formulae in Table 1 of the main 

text. 

In the truncated octahedra shown in Figure 7a of the main text, edge-length s1 was constant 

with particle size while s2 increased. It results in a variable surface area ratio of the [100] and 

the [111] faces, which leads to different values δ and γ∞. These have been calculated using da = 

0.28811 nm and γ[111] = 0.79 J m−2 and γ[100] = 0.92 J m−2;7 values for δ and γ∞ are given below 

in Table S3.  

Table S3. Edge-lengths, surface area ratios, macroscopic surface energy values and overall Tolman 

lengths for the truncated octahedra of Figure 7a of the main text. 

Edge lengths 
A[100] /A[111] γ∞ (J m−2) δ (nm) 

s1 s2 

2 3 0.348 / 0.652 0.835 −0.0319 

2 5 0.456 / 0.544 0.849 −0.0336 

2 7 0.505 / 0.495 0.856 −0.0344 

2 9 0.533 / 0.467 0.859 −0.0348 

2 11 0.551 / 0.449 0.862 −0.0351 

We note that the shape factor c also varies with size for the truncated octahedra described 

above. The smallest of the above particles is close to a regular truncated octahedron, while the 

largest rather resembles a cuboctahedron. The shape factor for these particles can thus be 

expected to be in between those of a regular truncated octahedron and a cuboctahedron. Figure 

S3 shows that a very limited effect of shape correction is to be expected. It has therefore not 

been calculated for these particles. Instead, the value for regular truncated octahedra was used 

in all cases.  
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S8 Twin plane energy  

As we explain, the total surface energy values from Ali et al.7 include an internal strain 

contribution due to twinning. The difference between the total surface energy from Ali et al.7  

and the size dependent surface energy can thus be interpreted as twinning energy. The total 

twinning energy for a cluster (aJ) is found after multiplying the difference (J m−2 or aJ nm−2) 

with the total surface area (nm2). This value is scaled to the total twin-plane surface area for 

icosahedra as shown in Figure 8 of the main text. 

Icosahedral particles have 30 triangular twin-planes: three shared twin-planes for each of its 

20 tetrahedral subunits. The exact definition of the twin-plane for icosahedra can be debated. 

Two possible surface area definitions are shown in Figure S7; though the resulting twin-plane 

energy values vary, the trend is not affected by the choice. For our analysis, we use the smaller 

of the two definitions, indicated by the darker blue in Figure S7. 

  
Figure S7. Total twinning energy for icosahedra plotted against twin-plane area. The right panel shows 

two possible ways of defining the triangulartwin-plane area. There was little difference between the 

trends found for these two definitions, we have used the smaller of the triangles. In an icosahedron, 30 

of these triangular twin-planes are found.   

corner 
atom 

corner 
atom 

center 
atom 
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S9 Surface enthalpy 

Relating surface enthalpy to the enthalpy of vaporization and atomization  

Surface formation can be considered as breaking of intermolecular or interatomic bonds, 

which requires energy. For a solid or liquid particle, the surface enthalpy contribution to the 

particle enthalpy is equal to the product Ap∙∆Hsurf, in which Ap is the specific surface area (m2 

mol−1) and ∆Hsurf is the surface enthalpy (J m−2). In the simplest approach, the excess surface 

enthalpy (J mol-1) is calculated assuming a spherical morphology and constant value for ∆Hsurf. 

The specific surface area of a particle can be related to the number of atoms N, using the particle 

radius found according to: 

𝐴𝑝 = 4𝜋𝑟2
𝑁𝐴

𝑁
 =  4𝜋

𝑁𝐴

𝑁
(

3𝑀𝑁

4𝜋𝑁𝐴𝜌
)

⅔

= (4𝜋
𝑁𝐴

𝑁
)

⅓

(
3𝑀

𝜌
)

⅔

                                                       (𝑆7) 

where NA is Avogadro’s number (mol−1), M is the molar mass (g mol−1), and ρ is the bulk 

density (g m−3). The upper limit of the specific surface area is determined by the radius of a 

single atom or molecule (N = 1).  

The result of this approach is given in Figure S8 with full lines for the formation of water 

nano-droplets and silver nanoparticles. At room temperature, surface enthalpy values (∆Hsurf) 

are respectively 118 mJ m−2 for water12 and 1.52 J m−2 for gold (Table 2 main text). These 

values refer to the slope of the full lines in Figure S8. The value for gold has been derived (next 

section), using the relationships of Tyson and Miller.13  

With this simplified approach, the experimental energy of formation of a single molecule or 

atom in the gas phase is close to the enthalpy of formation (∆Hf) of the equilibrium phase 

amended with a surface enthalpy contribution in the size limit. In other words, a major part of 

the enthalpy of vaporization or atomization is explained by the surface enthalpy that a single 

liquid molecule or solid atom would have. Introducing a size dependency for the surface 

enthalpy allows us to close the gap and equate the surface enthalpy of a single molecule or atom 

formation with the enthalpy of vaporization or atomization, as shown in Figure S8 with dotted 

lines. 
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Figure S8. Molar enthalpy of water and gold modified by surface enthalpy, ranging from bulk material 

to a single molecule or atom. The enthalpy of surface formation for a particle with the size of a single 

molecule or atom already explains a major part of the enthalpy of evaporation or atomization if a 

constant surface enthalpy is assumed (solid line). The two values can be unified by introducing size 

dependency of the surface enthalpy. The  uplift of the curve (dotted line) is equivalent with a negative 

value for the Tolman length.  

This size dependency of the surface enthalpy in Figure S8 is obtained using the 

thermodynamic approach of Tolman (eq 6, main text), applying a Tolman length of δ = −0.014 

nm and δ = −0.009 nm, respectively for water and gold. When the same analysis is performed 

for silver, a Tolman length of -0.006 nm is found. Note that the value for Tolman length of 

water is for surface enthalpy, and therefore different from the Tolman length in the main text, 

which is for the surface Gibbs free energy. In case of surface enthalpy, the values for the Tolman 

length are negative, which is equivalent in Figure S8 with an increase of the slope and an uplift 

of the curve relating the formation of surface area to the enthalpy change. The diamond and 

square in Figure S8 are the enthalpy of the bulk liquid and solid, respectively, and the spheres 

are the enthalpies of the constituting molecule or atom in the gas phase. The difference between 

both types of values is the enthalpy of vaporization and atomization. 

Thermodynamic surface data for gold  

While there are ample measurements for the size dependency of surface tension in liquid 

metals at high temperature, to our knowledge there are none for solid metals. Although the 

development of computational techniques has created a large body of data, the variation within 

those data is large. Moreover, the present approach requires a generic single surface energy 

value, whereas ab initio techniques mostly are applied to specific crystal faces. For this reason, 

we choose to base ourselves on the only work to date that specifies surface energy for solid 

metals, based on empirical data.  

Tyson and Miller13 primarily focus on the solid-vapor surface tension, which they estimate 

to have a value of 1.18 times the liquid-vapor surface tension at the melting temperature (TM). 

Using the data available at the time, this correlation leads to a surface tension of 1.33 J m−2 for 
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solid gold at T = TM. Using the latest experimental data, 14-16  an average of ∆Gsurf, (l) = 1.13 ± 

0.02 J m−2 is found for liquid gold at the melting temperature, suggesting a value of ∆Gsurf, (s) = 

1.34 J m−2 for solid gold. 

Additionally, Tyson and Miller13 devoted a section in their paper to surface entropy. In short, 

they argued that surface entropy is linked to the surface area per mole of surface atoms (Am), 

estimated using 1.612 NA
⅓ Vm

⅔, where NA is Avogadro’s number and Vm is the molar volume 

(m3 mol−1).  The entropy contribution is found as the sum of contributions from 3 different 

temperature intervals (Figure S9).  At heating from 0 K to the Debye temperature (TD), the 

entropy increases linearly from 0 to 0.8 R/Am, where  R is the gas constant R = 8.134 J mol−1 

K−1. Between the TD and ½TM, the surface entropy is constant at 0.8R/AM, and between ½TM 

and TM, it increases linearly from 0.8 R/AM to 1.8 R/AM.  

The surface entropy for solid gold at the melting temperature, as it follows from these 

relationships (0.23 mJ m−2 K−1), exceeds the surface entropy for liquid gold, as found from the 

temperature dependence of the surface tension (0.15 ± 0.01 mJ m−2 K−1).14-16 We have plotted 

the  temperature dependence of surface entropy13 for solid gold in Figure S9, using the 

theoretical value Ssurf = 0.23 mJ m−2 K−1 at T = TM, a melting temperature of TM = 1337 K, and 

TD = 0.2 TM. 

With the above information for solid gold, one is able to calculate the temperature 

dependency of the surface enthalpy using Gsurf = 1.34 J m−2 at the melting temperature. The 

corresponding enthalpy follows from Hsurf
  = Gsurf  + TSsurf. The temperature dependency 

of Gsurf follows from:13 

∆𝐺surf − ∆𝐺surf(𝑇M) = ∫ ∆𝑆surf

𝑇M

𝑇

𝑑𝑇                                                                                             (𝑆7) 

The results of these calculations are summarized in Table 2 (main text) and visualized in Figure 

S9.  
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Figure S9. Temperature dependence of surface free energy (∆Gsurf) and surface entropy (∆Ssurf) 

according to Tyson and Miller,13 as well as the surface enthalpy (∆Hsurf) that follows from it. Surface 

free energy and surface enthalpy values correpsond to the primary (left) y-axis, surface entropy to the 

secondary (right) y-axis. The dotted arrows indicate important temperatures for estimating surface 

entropy: the Debye temperature (TD  0.2TM), half of the melting temperature (½TM) and the melting 

temperature (TM). 

Thermodynamic surface data for silver  

The above procedure has also been performed for silver. Averaging recent experimental 

data,17-19 we obtain a surface Gibbs free energy Gsurf, (l) for liquid silver at the melting 

temperature of 0.934 ± 0.03 J m−2. Using the above discussed energetic difference between the 

surface of solid and liquid metals at TM, i.e.  Gsurf, (s) = 1.18 Gsurf, (l),
13 we find Gsurf, (s) = 1.10 

J m−2 at T = TM, in accordance with the value of 1.09 J m−2, given by Tyson and Miller.13 For 

the surface entropy for solid silver at the melting temperature, we used Ssurf = 0.23 mJ m−2 

K−1, equal to 1.8 R/AM.13 This value corresponds very well with the temperature dependency of 

the surface tension of molten silver 0.21 ± 0.05 mJ m−2 K−1.17-19 Results are given in Table 4 of 

the main text.  
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