Supporting information

Successive C1-C2 Bond Cleavage: Mechanism of Vanadium(V)-Catalyzed Aerobic Oxidation of D-Glucose to Formic Acid in Aqueous Solution

Muge Niu,[†] Yucui Hou,[‡] Weize Wu,^{†,*} Shuhang Ren,[†] and Ru Yang[§]

[†]State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering,

Beijing University of Chemical Technology, Beijing 100029, P. R. China

[‡]Department of Chemistry, Taiyuan Normal University, Taiyuan 030031, P. R. China

[§]College of Materials Science and Engineering, Beijing University of Chemical Technology,

100029, Beijing, P.R. China

Table S1. Signal assignment of ¹³C-labeled compounds in ¹³C NMR appeared in text.

Compound name	Chemical shift /ppm	Compound name	Chemical shift /ppm
D-glucose-1- ¹³ C	95.92, 92.11	D-arabinose-5- ¹³ C	66.36, 62.44
D-glucose-2- ¹³ C	74.13, 71.47	D-arabinonicacid-1- ¹³ C	176.18
D-glucose-3- ¹³ C	76.02, 72.55	D-arabinonicacid-2- ¹³ C	73.75
D-glucose-6- ¹³ C	60.79, 60.63	D-tetrose-1- ¹³ C	101.02, 95.87
D-mannose-1- ¹³ C	94.01, 93.64	D-tetrose-4- ¹³ C	71.47, 71.11
D-mannose-2- ¹³ C	70.65, 70.20	D-glyceraldehyde-3- ¹³ C	62.31
D-arabinose-1- ¹³ C	96.94, 92.75	D-glycolaldehyde-2- ¹³ C	64.47
D-arabinose-2- ¹³ C	72.16, 68.70	glycolic acid-2- ¹³ C	59.25

^{*} Corresponding author; Email: wzwu@mail.buct.edu.cn, Tel./Fax: +86 10 64427603.

Scheme S1. Reaction of 2-D-glucosone and *o*-phenylenediamine for detection of α -dicarbonyl structure.

Scheme S2. Reactions of (A) D-glucose, (B) D-glucose-1-D and (C) D-glucose-2-D

oxidation catalyzed by NaVO₃-D₂SO₄ in D₂O.

Figure S1. The ¹H NMR spectra of the reaction mixture with D-glucose as the substrate (A) before and (B) after reaction. (B) full spectrum, showing the signal of FA (**a**). (C) the region of $3 \sim 5$ ppm of (A) and (B), showing signals of D-arabinose (**b**). Reaction conditions of (B): D-glucose, 0.01 g; NaVO₃, 0.35 wt%; D₂SO₄, 1 wt%; D₂O, 0.5 cm³; initial O₂: 3 MPa; temperature, 100 °C; reaction time, 10 min.

Figure S2. The MS spectra of the D-arabinose (A) and the substrate D-glucose (B). Reaction conditions: D-glucose, 0.1 g; NaVO₃, 0.35 wt%; H₂SO₄, 1 wt%; H₂O, 6 cm³; initial O₂: 3 MPa; temperature, 100 °C; reaction time, 2 h.

Figure S3. The ¹³C NMR spectra of the reaction mixture with D-glucose-1-¹³C as the substrate at different reaction times. (A) 0.5 h, (B) 2 h, (C) 6 h. Reaction conditions: D-glucose-1-¹³C, 0.005 g; NaVO₃, 0.2 wt%; D₂SO₄, 1 wt%; D₂O, 6 cm³; initial O₂: 3 MPa; temperature, 100 °C.

Figure S4. The ¹³C NMR spectra of the reaction mixture with D-glucose-2-¹³C as the substrate at different reaction times. (A) 0.5 h, (B) 2 h, (C) 6 h. Reaction conditions: D-glucose-2-¹³C, 0.005 g; NaVO₃, 0.2 wt%; D₂SO₄, 1 wt%; D₂O, 0.5 cm³; initial O₂: 3 MPa; temperature, 100 °C.

Figure S5. Dependence of products distribution on reaction time with (A) D-glucose and (B) D-mannose as the substrate. Reaction conditions: D-glucose or D-mannose, 0.045 g; NaVO₃, 0.2 wt%; H₂SO₄, 1 wt%; H₂O, 6 cm³; initial O₂: 3 MPa; temperature, 100 °C.

Figure S6. The ¹³C NMR spectra of the reaction mixture with D-arabinose as the substrate at different reaction times. (A) 0.5 h, (B) 1 h, (C) 1.5 h, (D) 2 h. Reaction conditions: D-glucose, 1 g; NaVO₃, 0.35 wt%; H₂SO₄, 1 wt%; H₂O, 6 cm³; initial O₂: 3 MPa; temperature, 100 °C.

Figure S7. The ion extracted chromatograms of LCMS of the reaction mixture with D-glucose as the substrate at different reaction times. The chromatograms of $C_{12}H_{22}O_{11}Na^+$, $C_6H_{12}O_6Na^+$ and $C_6H_{10}O_6Na^+$ are shown in green, red and blue, respectively. Other ion chromatograms are in relatively low intense and are shown in

light blue (shown in Figure S8). Reaction conditions: D-glucose, 0.1 g; NaVO₃, 0.35 wt%; H₂SO₄, 1 wt%; H₂O, 6 cm³; initial O₂: 3 MPa; temperature, 100 °C.

Figure S8. The ion extracted chromatograms of LCMS of the reaction mixture with D-glucose as the substrate at different reaction times (partially shown from Figure S7). Ion chromatograms are shown in different colors. $C_5H_{10}O_5Na^+$ represents D-arabinose. Reaction conditions: D-glucose, 0.1 g; NaVO₃, 0.35 wt%; H₂SO₄, 1 wt%; H₂O, 6 cm³; initial O₂: 3 MPa; temperature, 100 °C.

Figure S9. The ¹³C NMR spectra of the reaction mixture with (A) glycolaldehyde (0.05 g), (B) D-glyceraldehyde (0.05 g), (C) D-erythrose (0.05 g), (D) glycolaldehyde (0.025 g) + D-glyceraldehyde (0.025 g), (E) glycolaldehyde (0.025 g) + D-erythrose (0.025 g), (F) D-glyceraldehyde (0.05 g) + D-erythrose (0.025 g) in H₂SO₄ aqueous solution with no NaVO₃ or O₂ (replaced by N₂ with the same initial pressure). (B), (D) and (F) contain signals in the regions of 15 ~ 25 ppm and in 209 ppm (not shown), which possibly refer to dehydration products of D-glyceraldehyde. Reaction conditions: H₂SO₄, 1 wt%; H₂O, 6 cm³; initial N₂: 3 MPa; temperature, 100 °C, reaction time, 2 h.

Figure S10. ¹³C NMR spectra of the reaction mixture with D-glucose-1-¹³C as the substrate with the absence of O₂. Reaction conditions: D-glucose-1-¹³C, 0.005 g; NaVO₃, 0.2 wt%; D₂SO₄, 1 wt%; D₂O, 0.5 cm³; initial N₂: 3 MPa; temperature, 100 °C; reaction time, 1 h.

Figure S11. Time course data for D-glucose conversion in NaVO₃-H₂SO₄ aqueous solution with O₂ with varying NaVO₃ concentrations. Reaction conditions: D-glucose, 0.045 g; H₂SO₄, 1 wt%; H₂O, 30 cm³; initial O₂: 3 MPa; temperature, 100 °C. The initial rate in Figure 11A was obtained from the slope of the linear fit to the timepoints (120 ~ 300 min).

Figure S12. Time course data for D-glucose conversion in NaVO₃-H₂SO₄ aqueous solution with O₂ with varying D-glucose concentrations. Reaction conditions: NaVO₃, 0.2 wt%; H₂SO₄, 1 wt%; H₂O, 30 cm³; initial O₂: 3 MPa; temperature, 100 °C. The initial rate in Figure 11B was obtained from the slope of the linear fit to the timepoints $(60 \sim 300 \text{ min})$.