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Details of the detection of stable RONS/ROS

For the nitrite and nitrate determination, the samples (200 µL) were taken immediately after plasma 
treatment, and were mixed with 400 µL ultrapure water to avoid further reactions. The IC samples 
were stored in the refrigerator until all IC samples are prepared and then measured as soon as 
possible using the IC. The H2O2 measurement took place immediately after plasma treatment: the 
taken sample was mixed with the previously prepared dye, so that the colour conversion directly 
started. According to the manufacturer, the conversion needs about 15-20 minutes to reach the 
endpoint and is afterwards stable for a day. Hence, after the last sample was treated by the plasma, 
the incubation time of 20 minutes was awaited and afterwards the absorbance was measured.
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In scheme S1, the selected possible •NO-formation mechanisms as well as some destruction 
reactions are schematically shown. As the formation process contains gas phase as well as liquid 
phases species, the gas phases ones are indicated by the subscripted ‘g’. With the blue arrows, the 
reaction affected strongly by the presence of ambient O2 are indicated, whereas the orange arrows 
represented interfacial reactions. 

Scheme S1: Mechanisms that could lead to the generation of liquid phase •NO. Blue arrows indicate 
reactions that are expected to be remarkably influenced by the exclusion of ambient O2 using N2 
curtain gas (see subsection ‘Destruction and Regulation of •NO Production’). Orange arrows 
indicate reactions, which are likely to occur in the interfacial region. The subscript ‘g’ denotes 
gaseous species that may dissolve in the liquid.
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