Polyhedral Perspective on Capacity Limit of Cathode Compounds for Lithium-ion Battery: A Case Study for Li₆CoO₄

Zhenlian Chen,* Zhifeng Zhang, Jun Li*

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

I. Prototype of tetrahedron structured Li_2O and octahedron structured Li_2O_2

In tetrahedron structured Li₂O, the prototype is cubic lattice with space group Fm3m, where all tetrahedral sites are occupied by Li within ABC stacked oxygen sublattice, shown in Fig.S1-a. However, within AB stacked oxygen sublattice, half tetrahedra share face with the other half, seen in Fig.S1-c, that would be energy unfavorable because the very strong repulsion between face-sharing tetrahedra while attraction between corner- or edge- sharing tetrahedra.¹ In addition, face sharing octahedra may only energy favor for metal ions totally disordered because the shared face is a strong geometric restriction, seen in Fig.S1-b and d.

Figure S1 Prototypes of Li₂O₂ and Li₂O

II. Madelung constant matrix

Of the P4₂/nmc unit cell with two formula Li₆CoO₄, the Madelung constant matrix is:

- 0.80	- 0.01	- 0.21	0.00	- 0.10	- 0.15	- 0.10	- 0.15	- 0.15	- 0.10	- 0.15	
	- 0.80	0.00	- 0.21	- 0.15	- 0.10	- 0.15	- 0.10	- 0.10	- 0.15	- 0.10	
		- 0.80	- 0.01	- 0.15	- 0.10	- 0.15	- 0.10	- 0.10	- 0.15	- 0.10	
			- 0.80	- 0.10	- 0.15	- 0.10	- 0.15	- 0.15	- 0.10	- 0.15	
				- 0.76	- 0.19	0.00	- 0.01	- 0.17	- 0.13	- 0.17	
					- 0.76	- 0.01	0.00	- 0.13	- 0.17	- 0.13	
						- 0.76	- 0.19	- 0.17	- 0.13	- 0.17	
							- 0.76	- 0.13	- 0.17	- 0.13	
										0.00	
								-076	– 0.19 – 0.76	- 0.01	
								0.70	- 0.76	- 0.76	
										0.70	

The matrix is lower-upper symmetric and only the upper elements are shown.

Figure S2 Neighbor connection of Co ion (C1) to Li ions (L2-4, 8, 12). Two L3-O₄ sharing corner with C1-O₄ for the periodicity along **a** axis, L1-O₄ along **b** axis and L10-O₄ along **c** axis; while one L6-O₄ sharing edge with C1-O₄. Table S1 More details for Table I in the text. Letters "L" and "C" represent Li and Co. The values of Madelung matrix elements are all negative. Bond length r_{ij} and Madelung matrix element M_{ij} are in unit of Å and Å⁻¹, respectively.

Sharing Pattern		pair		M _{ij}
	Edge	Edge C1,L(5,7,8,10); C2,L(6,9,11,12)		0.12
Co-Li	Corner	C1,L(6,9,11,12);C2,L(5,7,8,10)		0.13
00 21		C1,L(2,3); C2,L(1,4)		0.15
		C1,L(1,4);C2,L(2,3)	3.88	0.17
	Edge	L1,2; L3,4	2.31	0.21
Li _{4d} -Li		L1,L(6,9,11,12); L2,L(5,7,8,10); L3,L(5,7,8,10); L4,L(6,9,11,12)	2.33	0.1
	Corner	orner L1,L(5,7,8,10); L2,L(6,9,11,12); L3,L(6,9,11,12); L4,L(5,7,8,10)		0.15
	Edge	Edge L5,9; L6,10; L7,11; L8,12		0.19
Li _{8f} -Li _{8f}	Corner	L5,L(8,10); L6,L(9,11); L7,L(8,10); L12,L(9,11);	2.83	0.13
		L5,L(6,12); L7,L(6,12); L8,L(9,11); L10,L(9,11)	4	0.17

III. Energy landscapes for Li/vacancy distribution configurations of delithiated phases

Nine distinct configurations are obtained for Li₅CoO₄ and LiCoO₄ filtered among $C_{12}^2 = 66$ configurations generated by combination algorithm, thirty-one for Li₄CoO₄ and Li₂CoO₄ filtered among $C_{12}^4 = 495$ configurations, and fifty-one for Li₃CoO₄ among $C_{12}^6 = 924$ configurations. Different from cluster-expansion method, here repeating configurations are filtered and first-principles calculations are performed for all distinct configurations. Notably, the total energy landscapes show energy fluctuation not small, seen in Figure S3, suggesting the effect of Li/vacancy distribution on the phases is not ignorable.

Figure S3 Calculated total energy landscapes for assumed delithiated phases. The unit of energy difference is eV/f.u. The horizontal axis is serial numbers, increasing with Madelung energies, and the serial number of the most stable and instable configurations are labeled below.

IV. Electrochemical Performance

Figure S4 The first (black) and fifth (red) charge and discharge curves of $\rm Li/\rm Li_6CoO_4$ cell.

Reference

1. Chen, Z.; Li, J., A new method applicable to study solid compounds with multiple polyhedral structures. *Journal of Computational Chemistry* **2016**, *37* (16), 1476-1483.