Electronic supplementary information (ESI): Density functional study of phase stabilities and Raman spectra of Yb_2O_3 , Yb_2SiO_5 and $Yb_2Si_2O_7$ under pressure

Takafumi Ogawa,^{*a} Noriko Otani,^a Taishi Yokoi,^b Craig A. J. Fisher,^a Akihide Kuwabara,^{a,c} Hiroki Moriwake,^{a,c} Masato Yoshiya,^{a,d} Satoshi Kitaoka,^b and Masasuke Takata^{a,b}

1 Dependence of Raman spectra on hydrostatic pressure

Fig. S1 Dependence of (a) Raman spectra and (b) peak positions of C-type Yb₂O₃ on hydrostatic pressure.

^a Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan. E-mail: t_ogawa@jfcc.or.jp

^b Materials Research and Development Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan.

^c Center for Materials Research by Information Integration, National Institute for Materials Science, Tsukuba 305-0047, Japan

^d Department of Adaptive Machine Systems, Osaka University, Osaka 565-0871, Japan

Fig. S2 Dependence of (a) Raman spectra and (b) peak positions of X2-Yb2SiO5 on hydrostatic pressure.

Fig. S3 Dependence of (a) Raman spectra and (b) peak positions of β -Yb₂Si₂O₇ on hydrostatic pressure.

2 Vibrations of Si_xO_y tetrahedral units in Yb₂SiO₅ and Yb₂Si₂O₇

The parameter used to measure maximum deviation in a bond length during vibration is defined in the manuscript as

$$\Delta l_{ij} = \frac{\mathbf{r}_{ij}^2 - \mathbf{r}_{ij}^{0\,2}}{r_{ij}^0 A}.$$
(1)

Since expressing the interatomic vector by the atomic positions and vibrational displacement vectors leads to

$$\mathbf{r}_{ij} = (\mathbf{r}_{j}^{0} + \mathbf{u}_{j}) - (\mathbf{r}_{i}^{0} + \mathbf{u}_{i}) = \mathbf{r}_{ij}^{0} + \mathbf{u}_{j} - \mathbf{u}_{i},$$
(2)

the parameter, Δl_{ij} , can be rewritten as

$$\Delta l_{ij} = 2 \frac{\mathbf{r}_{ij}^{0} \cdot (\mathbf{u}_{j} - \mathbf{u}_{i})}{r_{ij}^{0}A} + \frac{(\mathbf{u}_{j} - \mathbf{u}_{i})^{2}}{r_{ij}^{0}A}.$$
(3)

The second term on the right hand side of this equation vanishes when *A* is sufficiently smaller than r_{ij}^0 ($A/r_{ij}^0 \rightarrow 0$), leading to a converged value of Δl_{ij} in the limit of small *A*. To confirm this behaviour, the dependence of Δl_{ij} on *A* is examined for a mode of X_2 -Yb₂SiO₅ as shown in Fig. S4. From the figure, we can see that the Δl_{ij} changes slightly for $A < 10^{-2}$. In this study, we used $A = 10^{-3}$ to calculate Δl_{ij} . The bond lengths between Si and O atoms and vibrational amplitudes, u_i^2/A^2 and Δl_{ij} , for characteristic modes with frequencies above 600 cm⁻¹ are shown in Figs. S5 – S10, where the structural pictures of Si_xO_y were drawn using VESTA¹ and Raman spectra which were broadened by 7.0 and 0.05 cm⁻¹ wide Lorentzians are shown by blue and red lines, respectively. The bond lengths in Si₃O₁₀ and SiO₄ units in α -Yb₂Si₂O₇ are summarised in Table S1.

Fig. S4 Dependence of maximum deviations in a bond length, Δl_{ij} , on an amplitude, *A*, for the Si-O4 bond in X₂-Yb₂SiO₅ for the 853 cm⁻¹ peak, shown in Fig. S5 (f).

References

1 K. Momma, F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272-1276.

Fig. S5 (a) Structure of the SiO₄ unit in X₂-Yb₂SiO₅, (b) high frequency range of the calculated Raman spectrum of X₂-Yb₂SiO₅, and (c-f) vibrational amplitudes and Δl_{ij} for the normal modes at 964, 919, 878, and 853 cm⁻¹, respectively.

Fig. S6 (a) Structure of the SiO₄ unit in X₁-Yb₂SiO₅, (b) high frequency range of the calculated Raman spectrum of X₁-Yb₂SiO₅, and (c-f) vibrational amplitudes and Δl_{ij} for the normal modes at 931, 928, 880, and 829 cm⁻¹, respectively.

Fig. S7 (a) Structure of the Si₂O₇ unit in β -Yb₂Si₂O₇, (b) high frequency range of the calculated Raman spectrum of β -Yb₂Si₂O₇, and (c-f) vibrational amplitudes and Δl_{ij} for the normal modes at 908, 886, 885, and 643 cm⁻¹, respectively.

Fig. S8 (a) Structure of the Si₂O₇ unit in γ -Yb₂Si₂O₇, (b) high frequency range of the calculated Raman spectrum of γ -Yb₂Si₂O₇, and (c-e) vibrational amplitudes and Δl_{ij} for the normal modes at 906, 870, and 643 cm⁻¹, respectively.

Fig. S9 (a) Structure of the Si_2O_7 unit in X-Yb₂Si₂O₇, (b) high frequency range of the calculated Raman spectrum of X-Yb₂Si₂O₇, and (c-f) vibrational amplitudes and Δl_{ij} for the normal modes at 957, 953, 890, and 674 cm⁻¹, respectively.

Fig. S10 (a) Structure of the Si₂O₇ unit in α -Yb₂Si₂O₇, (b) high frequency range of the calculated Raman spectrum of α -Yb₂Si₂O₇, and (c) vibrational amplitudes and Δl_{ij} for the normal mode at 975 cm⁻¹.

Fig. S10 (Continued) (d, e) normalized amplitudes and bond deviations for the normal modes at 898, and 700 cm⁻¹, respectively.

	D 11 .1 . 1 . 1
Bonds	Bond length [A]
Si1-O1	1.62
Si1-O2	1.64
Si1-O3	1.66
Si1-04	1.66
Si2-04	1.66
Si2-O5	1.64
Si2-06	1.62
Si2-07	1.68
Si3-07	1.75
Si3-08	1.65
Si3-09	1.63
Si3-O10	1.63
Si4-011	1.67
Si4-012	1.64
Si4-013	1.62
Si4-014	1.62

Table S1 Bond lengths between Si and O atoms in α -Yb₂Si₂O₇.