Loss of water from protonated polyglycines; interconversion and dissociation of the product imidazolone ions

K.H. Brian Lam,¹ Justin Kai-Chi Lau,^{1,2} Cheuk-Kuen Lai,¹ I.K. Chu,³ Jonathan Martens,⁴ Giel Berden,⁴ Jos Oomens,⁴ Alan C. Hopkinson,¹ K.W. Michael Siu^{1,2}*

¹Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada

²Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada

³Department of Chemistry, The University of Hong Kong, Hong Kong, China

⁴*Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands*

Supporting information

Scheme S1. Mechanism for the isomerization between the $[b_5]^+_I$ and $[b_5]^+_{II}$ ions. Relative enthalpies and (free energies) both in kJ mol⁻¹ are calculated at the B3LYP/6-311++G(d,p) level. The number in red denotes the highest barrier on the pathway.

Figure S1. CID spectrum of protonated pentaglycine with ¹⁸O-labeled at the first amide oxygen. The precursor ion is denoted by asterisk (*).

Figure S2. CID spectrum of protonated pentaglycine with ¹⁸O-labeled at the second amide oxygen. The precursor ion is denoted by asterisk (*).

Figure S3. Energy-resolved diagram for the fragmentations of $[G(^{18}O)GGGG + H]^+$ ion

Figure S4. Energy-resolved diagram for the fragmentations of $[GG(^{18}O)GGG + H]^+$ ion

Figure S5. CID spectrum of protonated pentaglycine with ¹⁸O-labeled at the third amide oxygen. The precursor ion is denoted by asterisk (*).

Figure S6. CID spectrum of protonated pentaglycine with ¹⁸O-labeled at the fourth amide oxygen. The precursor ion is denoted by asterisk (*).

Figure S8. Energy-resolved diagram for the fragmentations of $[GGGG(^{18}O)G + H]^+$ ion.

Figure S9. CID spectrum of protonated hexaglycine with ¹⁸O-labeled at the first amide oxygen. The precursor ion is denoted by asterisk (*).

Figure S10. CID spectrum of protonated hexaglycine with ¹⁸O-labeled at the second amide oxygen. The precursor ion is denoted by asterisk (*).

Figure S11. CID spectrum of protonated hexaglycine with ¹⁸O-labeled at the third amide oxygen. The precursor ion is denoted by asterisk (*).

Figure S12. Energy-resolved diagram for the fragmentations of $[G(^{18}O)GGGGG + H]^+$ ion

Figure S13. Energy-resolved diagram for the fragmentations of $[GG(^{18}O)GGGG + H]^+$ ion

Figure S14. Energy-resolved diagram for the fragmentations of $[GGG(^{18}O)GGG + H]^+$ ion.

Figure S15. CID spectrum of protonated hexaglycine with ¹⁸O-labeled at the fourth amide oxygen. The precursor ion is denoted by asterisk (*).

Figure S16. CID spectrum of protonated hexaglycine with ¹⁸O-labeled at the fifth amide oxygen. The precursor ion is denoted by asterisk (*).

Figure S17. Energy-resolved diagram for the fragmentations of $[GGGG(^{18}O)GG + H]^+$ ion.

Figure S18. Energy-resolved diagram for the fragmentations of $[GGGGG(^{18}O)G + H]^+$ ion.

Figure S19. Energy-resolved diagram for the fragmentations of the $[b_6]^+_I$ ion.

Figure S20. Energy-resolved diagram for the fragmentations of the $[b_6]^+_{II}$ ion.

Figure S21. Energy-resolved diagram for the fragmentations of the $[b_6]^+_{III}$ ion.

Figure S22. CID spectrum of $[GGG(^{18}O,^{15}N)GGG-OMe + H - H_2^{18}O]^+$. The precursor ion is denoted by asterisk (*)

Figure S23. CID specta of (a) $[Gly_7 + H]^+$, (b) $[Gly_8 + H]^+$, and (c) $[Gly_9 + H]^+$. The precursor ion is denoted by asterisk (*)

Figure S24. CID spectrum of $[Gly_7 + H - H_2O]^+$. The precursor ion is denoted by asterisk (*)

Figure S25. CID spectrum of $[Gly_8 + H - H_2O]^+$. The precursor ion is denoted by asterisk (*)

Figure S26. CID spectrum of $[Gly_9 + H - H_2O]^+$. The precursor ion is denoted by asterisk (*)

Figure S27. CID spectrum of $[Gly_{10} + H - H_2O]^+$. The precursor ion is denoted by asterisk (*)

Figure S28. CID spectrum of (A) [AGGG + H]+, (B) $[GAGG + H]^+$, (C) $[GGAG + H]^+$, and (D) $[P(^{18}O)GGG + H]^+$. The precursor ion is denoted by asterisk (*)