Supporting Information

Breakdown of periodicity in oxidation states of actinide metal doped AnB₁₂ (An= Th to Cm) clusters

Shu-Xian Hu,*a Mingyang Chen,a Bingyun Ao*b

^a Beijing Computational Science Research Center, Beijing 100193, China.

^c Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China.

Table S1. Relative energies (ΔE , kcal/mol) of different spin state of AnB₁₂ (An = Th to Cm) computed at theory levels of PBE and B3LYP.

		PE	BE	B3L	B3LYP		
An Th Pa U Np Pu Am Cm	Spin state	Total E(kcal/mol)	Δ E(kcal/mol)	Total E (a.u.)	$\Delta E(kcal/mol)$		
ть	Triplet	-1733.92	0.0	-705.767681	0.0		
In	Singlet	-1727.88	6.0	-705.760519	4.5		
Da	Doublet	-1754.24	0.0				
ra	Quartet	-1743.34	10.9				
	Triplet	-1750.9	0.0	-774.998651	0.0		
0	Singlet	-1748.59	2.3	-774.962505	22.7		
	Quartet	-1764.26	0.0	-812.514317	0.0		
Np	Doublet	-1760.56	3.7	-812.4881493	16.4		
	Quartet (⁴ A ₁)	-1723.24	41.0				
	Quartet (${}^{4}A_{2}$)	-1733.65	30.6				
	Septet	-1754.56	0.0	-852.004715	0.0		
Du	Triplet	-1731.67	16.0				
Pu	Quintet	-1747.66	6.9	-852.009303	2.9		
	Singlet	-1672.1	75.6				
	Octet	-1765.03	0.0	-893.571014	0.0		
۸m	Sextet	-1764.75	0.3	-893.566156	3.0		
	Quartet	-1742.88	22.1				
	Doublet	-1709.32	55.7				
	Quintet	-1840.09	0.0	-937.168256	0.0		
Cm	Septet	-1825.25	14.8				
	Nonet	-1823.97	16.1	-937.169887	-1.0		
	Triple	-1767.98	72.1				

Table S2. Optimized geometrical structures (bond length, Å) and formation energies (SR-E_f, kcal/mol) for the reaction of An + B_{12} = An B_{12} (An = Th to Cm) at SR-B3LYP/M/ECP60MWB_SEG//B/aug-cc-pVTZ levels of theory. (All calculations are fully optimization without constrain.)

Species	Spin/GS	Elec. Conf.	OS	An-B, Å	SR-E _f	
ть	34	£0	11/	2.586,2.681,2.667,2.671,2.918,2.777,	120.4	
	A	10	IV	2.949,2.697,2.742,2.759,2.790,2.772	-129.4	
De	2	£0	V	2.530,2.530,2.541,2.579,2.631,2.631,	107 4	
Pa	-A	10	V	2.700,2.700,2.729,2.729,2.736,2.736	-137.4	
	3∧	f ²	IV.	2.648,2.660,2.670,2.711,2.717,2.718,	_118.0	
0	~	1		2.797,2.827,2.859,2.833,2.834,2.875	-110.5	
Np	4Δ	f4		2.664,2.665,2.666,2.721,2.729,2.730,	-76 3	
		I		2.823,2.824,2.853,2.852,2.855,2.855	-70.5	
Du	7.6.11	£ 5		2.686,2.686,2.881,2.749,2.887,2.753,	FC 2	
Pu	A A	13	111	2.726,2.858,2.858,2.749,2.881,2.887	-50.2	
A.m.	84	£7		2.760,2.811,2.871,2.870,2.975,2.912,	20.4	
Am	A	T'		2.913,2.903,2.905,2.975,3.046,3.046	-39.4	
Cm	94	£7		2.618,2.740,2.740,2.741,2.743,2.743,	72.2	
Cm	A			2.801,2.802,2.814,2.814,2.956,2.956	-/3.3	

Table S3. Average Mayer, Gopinathan-Jug (G-J) and Nalewajski-Mrozek (N-M) bond orders for 12 An–B bonds on the B3LYP optimized geometry of GS AnB_{12} at the PBE/TZ2P level.

Species	Mayer	G-J	N-M (1)	N-M (2)	N-M (3)
Th	0.41	0.35	0.41	0.47	0.36
Ра	0.51	0.50	0.58	0.61	0.56
U	0.43	0.41	0.56	0.59	0.53
Np	0.42	0.40	0.58	0.61	0.55
Pu	0.37	0.24	0.33	0.46	0.26
Am	0.29	0.16	0.20	0.31	0.13
Cm	0.32	0.30	0.36	0.39	0.32

Table S4. Average charges and spin populations on the metal and boron atoms on the B3LYP optimized geometry of GS AnB_{12} at the PBE/TZ2P level.

Species	Atom		Char	Spin			
		Mulliken	Hirshfeld	VDD	MDC_q	Mulliken	MDC_q
ть	Th	0.35	0.79	0.74	1.21	0.54	0.09
	Aver. B	-0.04	-0.07	-0.06	-0.08	0.12	0.16
Ра	Ра	0.27	0.90	0.88	1.25	0.41	0.19
	Aver. B	-0.03	-0.07	-0.07	-0.10	0.05	0.07
U	U	0.42	0.84	0.80	1.16	2.42	2.50

	Aver. B	-0.03	-0.07	-0.07	-0.10	-0.03	-0.04
Nin	Np	0.35	0.78	0.73	1.07	3.74	3.91
мр	Aver. B	-0.04	-0.06	-0.06	-0.10	-0.06	-0.07
Du	Pu	0.46	0.86	0.82	1.01	5.06	5.32
Pu	Aver. B	-0.04	-0.07	-0.07	-0.08	-0.09	-0.11
A 100	Am	0.53	0.78	0.74	0.91	6.91	6.93
AIII	Aver. B	-0.05	-0.06	-0.06	-0.09	0.01	0.01
Cm	Cm	0.50	0.74	0.69	1.02	6.11	6.71
Cm	Aver. B	-0.05	-0.06	-0.06	-0.09	-0.17	-0.22
B ₁₂	Aver. B	0.00	0.00	0.00	0.00		

An	Туре	Occ.	NLMO		
	LP	1.00	24.9%Th(s ^{1.00} d ^{22.14f4.68})+75.1%B(p)		
	LP	1.00	15.9%Th(s ^{1.00} d ^{10.14} f ^{1.47})+84.1%B(p)		
	4C	2.00	17.0%Th(d ^{6.31} f ^{1.00})+83.0%B(p)		
Th	6C	2.00	27.5%Th(s ^{1.00} d ^{18.1} f ^{3.8})+72.5%B(sp ^{7.03})		
In	6C	2.00	18.5%Th(d ^{13.10} f ^{1.00})+81.5%B(sp ^{17.26})		
	6C	2.00	2.4%Th(d ^{0.70} f)+97.6%B(sp ^{3.90})		
	6C	2.00	2.3%Th(d ^{2.17} f)+97.7%B(p)		
	6C	2.00	16.6%Th(s ^{1.00} d ^{2.16} f ^{0.46})+83.4%B(sp ^{6.24})		
	LP	1.00	28.2%Pa(s ^{1.00} d ^{6.55} f ^{5.05})+71.8%B(s ^{1.00} p ^{13.30})		
	LP	2.00	28.4%Pa(s ^{1.00} d ^{6.13} f ^{4.87})+71.6%B(s ^{1.00} p ^{14.75})		
	LP	2.00	32.3%Pa(s ^{1.00} d ^{8.05} f ^{8.88})+67.7%B(s ^{1.00} p ^{10.78})		
	LP	2.00	25.1%Pa(d ^{1.59} f ^{1.00})+74.9%B(s ^{1.00} p ^{17.85})		
Ра	LP	2.00	21.1%Pa(d ^{2.14} f ^{1.00})+78.9%B(s ^{1.00} p ^{8.15})		
	4C	2.00	20.6%Pa(s ^{1.00} d ^{26.10} f ^{13.60})+79.42%B(s ^{1.00} p ^{13.36})		
	6C	2.00	5.0%Pa(s ^{1.00} d ^{23.33} f ^{43.09})+95.0%B(s ^{1.00} p ^{5.04})		
	6C	2.00	4.1%Pa(d ^{1.14} f)+95.9%B(p)		
	3C	2.00	1.8%Pa(sd ^{0.69} f ^{3.60})+98.2%B(p)		
	LP	1.00	99.1%U(f)+0.9%B(s ^{1.00} p ^{4.43})		
	LP	1.00	91.3%U(f)+8.7%B(s ^{1.00} p ^{14.84})		
	LP	2.00	17.348%U(d ^{2.31} f ^{1.00})+82.7%B(p)		
	2C	2.00	86.473%U(f)+13.5%B(s ^{1.00} p ^{19.52})		
U	4C	2.00	24.1%U(s ^{1.00} d ^{4.54} f ^{2.17})+75.9%B(s ^{1.00} p ^{32.35})		
	5C	2.00	12.8%U(s ^{1.00} d ^{3.09} f ^{0.93})+87.2%B(s ^{1.00} p ^{10.52})		
	5C	2.00	7.8%U(d ^{3.15} f ^{1.00})+92.2%B(s ^{1.00} p ^{21.09})		
	5C	2.00	9.3%U(d ^{5.60} f ^{1.00})+92.7%B(s ^{1.00} p ^{16.62})		
	5C	2.00	4.0%U(d ^{9.62} f)+96.0%B(p)		

	5C	2.00	2.1%U(d ^{1.28} f)+97.9%B(sp ^{4.01})
	5C	2.00	1.9%U(sd ^{5.99} f ^{3.86})+98.9%B(sp ^{6.12})
	LP	1.00	99.1%Np(f)+0.9%B(s ^{1.00} p ^{4.26})
	LP	1.00	99.0%Np(f)+1.0%B(s ^{1.00} p ^{5.47})
	LP	1.00	96.0%Np(f)+4.0%B(s ^{1.00} p ^{24.75})
	LP	1.00	95.5%Np(f)+4.5%B(s ^{1.00} p ^{17.19})
	LP	1.00	12.0%Np(d ^{3.33} f ^{1.00})+75.9%B(p)
Νр	5C	2.00	13.8%Np(s ^{1.00} d ^{2.91} f ^{1.50})+87.2%B(p)
	5C	2.00	15.1%Np(s ^{1.00} d ^{3.57} f ^{1.63})+85.9%B(p)
	5C	2.00	13.5%Np(d ^{1.18} f ^{1.00})+86.5%B(p)
	5C	2.00	8.3%Np(d ^{3.57} f ^{1.00})+91.7%B(p)
	5C	2.00	5.0%Np(d ^{4.04} f ^{1.00})+95.0%B(p)
	I	I	
	LP	1.00	99.4%Pu(f)+0.6%B(s ^{1.00} p ^{6.74})
	LP	1.00	99.3%Pu(f)+0.7%B(s ^{1.00} p ^{10.21})
	LP	1.00	99.3%Pu(f)+0.7%B(s ^{1.00} p ^{8.11})
	LP	1.00	94.9%Pu(f)+5.1%B(p)
	LP	1.00	92.7%Pu(f)+7.3%B(p)
Pu	LP	1.00	99.4%B(p)
	4C	2.00	43.0%Pu(d ^{0.14} f ^{1.00})+57.0%B(p)
	4C	2.00	16.4%Pu(s ^{1.00} d ^{1.95} f ^{3.56})+83.6%B(p)
	5C	2.00	7.1%Pu(d ^{6.46} f ^{1.00})+92.9%B(p)
	5C	2.00	4.3%Pu(d ^{7.12} f)+95.7%B(p)
	5C	2.00	1.1%Pu(d ^{9.15})+98.9%B(p)
	5C	2.00	1.4%Pu(d ^{6.90})+98.6%B(p)
	•		-
	LP	1.00	99.8%Am(f)+0.2%B(s ^{1.00} p ^{3.32})
	LP	1.00	99.8%Am(f)+0.2%B(p)
	LP	1.00	99.6%Am(f)+0.4%B(p)
	LP	1.00	99.3%Am(f)+0.7%B(p)
	LP	1.00	99.0%Am(f)+1.0%B(p)
Am	LP	1.00	94.5%Am(f)+5.5%B(p)
	LP	1.00	91.2%Am(f)+8.8%B(p)
	3C	2.00	7.2%Am(s ^{1.00} d ^{16.80} f ^{0.22})+92.8%B(p)
	4C	2.00	6.0%Am(d ^{93.0} f ^{1.00})+94.0%B(p)
	4C	2.00	14.4%Am(s ^{1.00} d ^{0.65} f ^{0.03})+85.6%B(p)
	4C	2.00	7.4%Am(s ^{1.00} d ^{1.51} f ^{0.04})+92.6%B(p)
	LP	1.00	99.9%Cm(f)+0.1%B(s ^{1.00} p ^{0.03})
Cm	LP	1.00	99.9%Cm(f)+0.1%B(s ^{1.00} p ^{1.40})
	LP	1.00	99.9%Cm(f)+0.1%B(s ^{1.00} p ^{7.51})

LP	1.00	99.8%Cm(f)+0.2%B(s ^{1.00} p ^{6.04})
LP	1.00	99.7%Cm(f)+0.3%B(s ^{1.00} p ^{8.59})
LP	1.00	99.7%Cm(f)+0.3%B(s ^{1.00} p ^{12.53})
LP	1.00	99.4%Cm(f)+0.6%B(p)
LP	1.00	10.7%Cm(s ^{1.00} d ^{8.00} f ^{0.04})+89.3%B(p)
4C	2.00	1.4%Cm(sd ^{8.54})+98.6%B(p)
5C	2.00	1.5%Cm(sd ^{7.64})+98.9%B(p)
5C	2.00	1.1%Cm(sd ^{27.64})+98.9%B(p)
5C	2.00	1.1%Cm(sd ^{27.13})+98.9%B(p)

Table S6. Selected optimized geometrical structures (bond length, Å) and formation energies (kcal/mol) for the reaction of An + $B_{12} = AnB_{12}$ (An = Th to Cm) at SR/SO-PBE/TZP levels of theory. (All calculations are fully optimization without constrain.)

Species	Spin/GS	Elec. Conf. of An	OS	An-B, Å	SR-E _f	SO-E _f
Th	ЗА	f ⁰	IV	2.602-2.825 (2.732)	-187.6	-181.1
Ра	² A	f ⁰	V	2.512-2.748 (2.636)	-194.4	-186.1
U	³ A	f ²	IV	2.568-2.764 (2.699)	-167.5	-168.4
Np	⁴ A	f ⁴		2.594-2.781 (2.705)	-144.5	-151.1
Pu	⁷ A″	f ⁵	111	2.629-2.843 (2.738)	-118.0	-124.7
Am	⁸ A	f ⁷	II	2.665-2.958 (2.822)	-90.9	-96.4
Cm	⁹ A	f ⁷		2.661-2.875 (2.770)	-128.4	-131.1

Figure S1. Optimized structures for UB₁₂ at the B3LYP level. The relative energy is labeled under each structure.

nine 2c-2e B-B bonds ON=1.89 – 1.91 |e|

two 3c B-B bonds ON=0.86, 0.86 |e| with \rightarrow Th dative character

two 4c-2e B-B MOs ON= 1.85 - 1.94 |e|

one 7c-2e B-B MO ON=1.76 |e|

Figure S2. AdNDP analysis for ThB₁₂. ON denotes the occupation number and is equal to 2.00 |e| in the ideal case.

Figure S3. AdNDP analysis for UB₁₂. ON denotes the occupation number and is equal to 2.00 |e| in the ideal case.

four 1c-1e on Np ON=0.89 - 0.99 |e|

Figure S4. AdNDP analysis for NpB₁₂. ON denotes the occupation number and is equal to 2.00 |e| in the ideal case.

Figure S5. AdNDP analysis for AmB₁₂. ON denotes the occupation number and is equal to 2.00 |e| in the ideal case.

Figure S6. AdNDP analysis for CmB₁₂. ON denotes the occupation number and is equal to 2.00 |e| in the ideal case.