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1. Parameterisation process

Step 2.     Fitting of the density parameters

Computing electron density from relaxed structures 
along high symmetry lines (with DFT), for a single 

metal. Numerical fit of the electron density parameters 
to the DFT data.

Fitting (Gulp) of the parameters with the 
values of the ab initio-derived lattice energy 

and cell parameters over a range of 
pressures

Step 1.     Parameters  and 𝐸𝑐 𝑟0

Directly determined from the data obtained for the DFT 
energy-minimized structures, for a single metal

Step 3. Fitting the rest of the parameters 

Does the metal allow deformations of the 

FCC cell?

Fitting (Gulp) of the parameters with ab 
initio-derived elastic constants, cell 

parameters, and energy observables

Step 4.     Fitting (Gulp) of the short range Buckingham-type 
parameters (for the binary alloy)

Fitting of the parameters with ab initio-derived elastic constants, cell 
parameters and energy observables

Yes No



Figure S1. Algorithm developed to carry out the fitting of the potential parameters 

of the alloy.



2. Simulation of the thermal expansion 

Table S1. Simulated and experimental cell parameters of Inconel 625 (Ni-Cr-Mo-Fe).

Temp. (K) Force field Exp1 Exp2 Exp3 Exp4 Exp5
120 3.612 3.590 3.591 3.592 3.594 3.598
160 3.613 3.592 3.593 3.594 3.596 3.600
212 3.616 3.594 3.595 3.596 3.598 3.602
296 3.620 3.598 3.600 3.601 3.603 3.607
332 3.622 3.600 3.602 3.602 3.604 3.608
368 3.624 3.602 3.603 3.604 3.606 3.610
468 3.630 3.608 3.609 3.610 3.612 3.616
534 3.634 3.611 3.613 3.614 3.616 3.620
566 3.636 3.613 3.614 3.615 3.617 3.621
626 3.640 3.617 3.618 3.619 3.621 3.625
652 3.641 3.618 3.619 3.620 3.622 3.626
684 3.643 3.620 3.621 3.622 3.624 3.628
712 3.645 3.622 3.623 3.624 3.626 3.630
776 3.649 3.626 3.627 3.628 3.630 3.634
814 3.653 3.628 3.629 3.630 3.632 3.636
848 3.655 3.630 3.631 3.632 3.634 3.638
878 3.657 3.632 3.633 3.634 3.636 3.640
952 3.662 3.637 3.638 3.639 3.641 3.645
988 3.666 3.639 3.640 3.641 3.643 3.647



3. Calculation of the elastic constants

For the determination of the elastic constants, NVT simulations were conducted at the 

equilibrium volume values determined for each temperature by either LD or MD simulations. 

The simulations were carried out in the temperature range from 0 to 1000 K, at discrete steps of 

100 K. At each temperature, the simulation was stabilized during the first 6 ps, and 14 ps were 

used for computing the elastic properties, sampling the data each 0.01 ps [7,8].

. The crystal orientation with respect to the Cartesian coordinates is shown in Figure 2. For each 

temperature, an initial compressive strain of = -0.5% was applied on the boundary of the cell. 𝜖 0𝑥𝑥

The strain was then increased by = 0.1%, and the same procedure was repeated for every ∆𝜖𝑥𝑥

temperature. The strain was successively increased in steps of 0.1%, up to a maximum strain of 

0.5%. In this work, two uniaxial deformation test configurations were considered. In the first 

one, the configuration was x|| [100], y|| [010], and z|| [001]. A uniaxial strain was applied along 

the x-direction , and the elastic constants of the crystal (  and ) were obtained from:(𝜖𝑥𝑥) 𝐶11 𝐶12

𝐶11 =
𝜎𝑥𝑥
𝜖𝑥𝑥

(6)

𝐶12 =
𝜎𝑦𝑦+ 𝜎𝑧𝑧
2𝜖𝑥𝑥

(7)

where , , and  are the normal stresses in the x-, y-, and z-direction, respectively (Figure 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧

2a main text). In the second configuration, the crystal was rotated by 45º around the z-axis for 

the uniaxial strain test, resulting in x|| [110], y|| [ 10], and z|| [001] (Figure 2b main text). The 1̅

cell was then deformed along the x-axis and the elastic constant  was obtained as:𝐶44

𝐶44 =
𝜎𝑥𝑥
𝜖𝑥𝑥

‒ (𝐶11 + 𝐶12
2 ) (8)

The study of the performance to model systems at a continuum level was performed by means 

of self-consistent and FFT numerical homogenizations. From single crystal elastic constants, it 

is possible to determine the polycrystalline elastic behavior by taking into account the so-called 

Orientation Distribution Function (ODF) of the crystals within the polycrystal, using different 

analytical or numerical methods. 

If the material has no texture (i.e., the ODF is random), the polycrystal will be isotropic and 

analytical expressions for two independent elastic constants (i.e., either the bulk and shear 



moduli, B and G) are given by different mean field methods [9–11]. For cubic solids, the bulk 

modulus K can be expressed as:

𝐾=
𝐶11 + 2𝐶12

3
(9)

The shear modulus can be calculated by using the Hill’s approximation [12]:

𝐺=
𝐺𝑉+ 𝐺𝑅

2

Where  and  are the Voigt [13] and the Reuss [14] shear moduli respectively.𝐺𝑉 𝐺𝑅

This shear modulus can be also computed by solving the following equation:

𝑓(𝐺) = 8𝐺3 + (9𝐵+ 4𝐺')𝐺2 ‒ (3𝐵𝐺' + 12𝐺'𝐺'')𝐺 ‒ 6𝐵𝐺'𝐺'' = 0 (10)

where  and are related to the single crystal elastic constants according to:𝐺' 𝐺''

𝐺' =
𝐶11 + 𝐶12

2
(11)

𝐺'' = 𝐶44 (12)

Finally, it is trivial to compute the elastic modulus E and the Poisson’s ratio  from K and G 𝜈

[15]:

𝐸=
9𝐾𝐺

3𝐾+ 𝐺 (13)

𝜈=
3𝐾 ‒ 2𝐺
2(3𝐾+ 𝐺) (14)

For a numerical approach of the elastic behaviour of the polycrystal, a home-made 

computational homogenization FFT code, developed in IMDEA-Materials, was used, called 

FFTMAD. For these simulations, the accelerated scheme [16] was selected for its very good 

performance using this phase contrast. The Representative Volume Elements (RVEs) were 

generated using Dream 3D [17], following a typical log-normal distribution of grains. Around 

2000 grains discretized in a cubic box of 128  128  128 voxels were used. The numbers of 

grains provide an accurate description of the random texture. The resulting number of voxels 

per grain (approximately 1000) is enough to provide a good representation of the fields within 

the superalloy grains [18]. The simulations were carried out imposing a uniaxial strain and the 

values of the elastic modulus and Poisson’s ratio were obtained from the average stress results. 

For each temperature, ten different RVEs with the same grain distribution were simulated.



Table S3. Simulated monocrystalline elastic constants from MD.

T (K) C11 
(GPa)

C12 
(GPa)

C44 
(GPa)

1 248.734 176.959 127.911
100 246.141 175.832 127.686
200 240.281 172.210 124.588
300 232.955 167.911 121.833
400 225.697 163.315 116.486
500 218.018 158.131 113.255
600 209.366 152.790 109.031
700 200.877 147.152 105.793
800 192.757 141.867 100.537
900 184.796 137.665 95.306

1000 175.966 131.369 89.953
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