Deprotonated Carbohydrate Anion Fragmentation Chemistry: Structural Evidence from Tandem Mass Spectrometry, Infra-Red Spectroscopy, and Theory

Jordan M. Rabus¹, Daniel R. Simmons¹, Philippe Maître², Benjamin J. Bythell¹*

¹Department of Chemistry and Biochemistry, University of Missouri, St. Louis, MO 63121, USA. ²Laboratoire de Chimie Physique (UMR8000), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay, France.

Manuscript: CP-ART-04-2018-002620.R1

Submission: 3 October 2018

*Address for correspondence:

Dr. Benjamin J. Bythell, Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121. Email: bythellb@umsl.edu

Key Words: Glycans, Mass spectrometry, Collision-induced Dissociation, Ion Structure, Density functional theory.

Figure S1: Energy-resolved tandem mass spectra of deprotonated lactose-(glucose-¹³C₆). KEY: m/z 347, [lactose-(glucose-¹³C₆)-H]⁻; m/z 167, Z_1 (¹³C₆H₉O₅⁻); m/z 179, C_1 (C₆H₁₁O₆⁻); m/z 149, Z_1 – H_2O (¹³C₆H₇O₄⁻); m/z 161, B_1 or C_1 - H_2O (C₆H₉O₅⁻); m/z 285, ^{0,2} A_2 (¹³C₄C₆H₁₇O₉⁻); m/z 267, ^{0,2} A_2 - H_2O (¹³C₄C₆H₁₅O₈⁻).

Figure S2: Relative energies of selected low-energy conformers of deprotonated lactose $(\beta$ -D-galactopyranosyl- $(1\rightarrow 4)$ - α -D-Glucose anomer) calculated at the M06-2X/6-31++G(d,p) level of theory. Values in kJ mol⁻¹: $\Delta E_{el+ZPE,OK}$ (ΔG_{298}).

Figure S3: Relative energies of selected low-energy conformers of deprotonated lactose (β-D-galactopyranosyl-(1→4)-β-D-Glucose anomer) calculated at the M06-2X/6-31++G(d,p) level of theory. Values in kJ mol⁻¹: $\Delta E_{el+ZPE,0K}$ (ΔG_{298}). The β-anomer GM is 5.0 (3.6) kJ mol⁻¹, $\Delta E_{el+ZPE,0K}$ (ΔG_{298}) above the α-anomer (Table 1).

Figure S4: Relative energies of selected low-energy conformers of deprotonated lactose $(\beta$ -D-galactopyranosyl- $(1\rightarrow 4)$ - β -D-Glucose ring-open) calculated at the M06-2X/6-31++G(d,p) level of theory. Values in kJ mol⁻¹: $\Delta E_{el+ZPE,0K}$ (ΔG_{298}). The ring-open GM is 32.1 (28.1) kJ mol⁻¹, $\Delta E_{el+ZPE,0K}$ (ΔG_{298}) above the α -anomer (Table 1) and 27.1 (24.5) kJ mol⁻¹ above the β -anomer (Table 2).

Figure S5: Comparison to the 2 lowest energy structures of deprotonated β -D-galactopyranosyl-(1 \rightarrow 4)-D-glucose (m/z 341.12 (C₁₂H₂₁O₁₁⁻)) with frequencies calculated from B3LYP/6-311++G(2d,2p) optimized structures. Panels a and b are ring-open forms, panels c and d β -glucose anomers, while panels e and f are α -glucose forms. Relative energies calculated at the M06-2X/6-31++G(d,p) level of theory. Values in kJ mol⁻¹: $\Delta E_{el+ZPE,0K}$ (ΔG_{298}) and are normalized to the α -glucose forms. Structural changes between the 2 levels of theory are negligible.

Figure S6: Selected Z_1 anion low-energy conformers calculated at the M06-2X/6-31++G(d,p) level of theory. a) deprotonated 1,4-anhydroglucose structures, [1,4-anhydroglucose-H]⁻; b) deprotonated 3,4-anhydroglucose, [3,4-anhydro- β -glucose-H]⁻; c) deprotonated 3,4-anhydroglucose [3,4-anhydro- α -glucose-H]⁻; d) deprotonated, ring-open aldehyde isomers. Values in kJ mol⁻¹: $\Delta E_{el+ZPE,0K}$ (ΔG_{298}).

Minima and TSs	$E_{ m el}/{ m H}$	$E_{\rm el+ZPE}/{ m H}$	$\Delta E_{ m el+ZPE,0K}/$ kJ mol ⁻¹	$\Delta H_{298}/$ kJ mol ⁻¹	$\Delta G_{298}/$ kJ mol ⁻¹	ΔS_{298} /J mol ⁻¹
GM	-1296.986125	-1296.624955	0	0	0	0
C_1 - Z_1 TS_1	-1296.909679	-1296.551085	193.9	196.5	190.0	21.8
C_1 - Z_1 TS_2	-1296.908922	-1296.550436	195.6	198.7	190.1	28.8
^{0,2} A ₂ formation TS_1	-1296.949413	-1296.591725	87.2	89.5	83.3	20.7
^{0,2} A ₂ formation TS_2	-1296.94447	-1296.591076	88.9	92.0	83.5	28.3
Ring-forming TS (α)	-1296.920038	-1296.562144	164.9	161.1	169.1	-26.8
Ring-forming TS (β)	-1296.924404	-1296.566837	152.6	148.7	157.2	-28.2

Table S1: Relative energies of the transition structures of deprotonated lactose $(\beta$ -D-galactopyranosyl- $(1\rightarrow 4)$ -D-Glucose ring-open) calculated at the M06-2X/6-31++G(d,p) level of theory. The ring-open GM is 32.1 kJ mol⁻¹ ($\Delta E_{el+ZPE,0K}$) above the α -anomer (Table 1).

Figure S7: The higher-energy 3,4-anhydroglucose-forming C_1 - Z_1 transition structures of deprotonated lactose (β -D-galactopyranosyl-($1\rightarrow$ 4)- β -D-Glucose) calculated at the M06-2X/6-31++G(d,p) level of theory. Values in kJ mol⁻¹: $\Delta E_{el+ZPE,0K}$ (ΔG_{298}). The reaction coordinate is illustrated with blue dots.

Figure S8: The lowest-energy 3,4-anhydroglucose-forming C_1 - Z_1 transition structure of deprotonated lactose (β -D-galactopyranosyl-($1\rightarrow 4$)- α -D-Glucose) calculated at the M06-2X/6-31++G(d,p) level of theory. Values in kJ mol⁻¹: $\Delta E_{el+ZPE,0K}$ (ΔG_{298}). The reaction coordinate is illustrated with blue dots.

Figure S9: The low-energy Z_1 -ring-opening isomerization transition structures generated from of the a) deprotonated 3,4-anhydro- α -glucose anion and b) deprotonated 3,4-anhydro- β -glucose anion structures. Relative energies calculated at the M06-2X/6-31++G(d,p) level of theory. Values in kJ mol⁻¹: $\Delta E_{el+ZPE,0K}$ (ΔG_{298}). The reaction coordinate is illustrated with blue dots.

Figure S10: The low-energy C_1 -ring-opening isomerization transition structures generated from the deprotonated β -D-galactopyranose anion structures. Relative energies calculated at the M06-2X/6-31++G(d,p) level of theory. Values in kJ mol⁻¹: $\Delta E_{el+ZPE,0K}$ (ΔG_{298}). The reaction coordinate is illustrated with blue dots.

Figure S11: Selected C_1 anion low-energy conformers calculated at the M06-2X/6-31++G(d,p) level of theory. a) deprotonated β -D-galactose C_1 structures, [β -D-galactose-H]⁻; b) deprotonated, ring-open aldehyde C_1 structures. Values in kJ mol⁻¹: $\Delta E_{el+ZPE,0K}$ (ΔG_{298}).

Figure S12: The lowest-energy ${}^{0.2}A_2$ -forming transition structures of deprotonated lactose (β -D-galactopyranosyl-(1 \rightarrow 4)- α -D-Glucose) calculated at the M06-2X/6-31++G(d,p) level of theory. a) ring-opening TS; b) ${}^{0.2}A_2$ formation TS_A. Values in kJ mol⁻¹: $\Delta E_{el+ZPE,0K}$ (ΔG_{298}). The reaction coordinate is illustrated with blue dots.

Figure S13: The lowest-energy ${}^{0,2}A_2$ -forming transition structures of deprotonated lactose (β -D-galactopyranosyl-(1 \rightarrow 4)- β -D-Glucose) calculated at the M06-2X/6-31++G(d,p) level of theory. a) ring-opening TS; b) ${}^{0,2}A_2$ formation TS_A. Values in kJ mol⁻¹: $\Delta E_{el+ZPE,0K}$ (ΔG_{298}). The reaction coordinate is illustrated with blue dots.