SUPPORTING INFORMATION

Interactions between H -bonded [Cu" ${ }_{3}\left(\mu_{3}-\mathrm{OH}\right)$]triangles; A combined magnetic susceptibilty and EPR study.
Logesh Mathivathanan, ${ }^{a}$ Athanassios K. Boudalis, ${ }^{a, b}$ Philippe Turek, ${ }^{b}$ Michael Pissas, ${ }^{c}$ Yiannis Sanakis, ${ }^{\text {c* }}$ Raphael G. Raptis ${ }^{a *}$

Details for the simulation of the solide powder EPR spectra

In order to account for broadening effects we assume one nuclear spin per trimer with $I_{a}=I_{b}$ $=3 / 2$ with a hyperfine interaction $A_{\mid l, i}=280 \mathrm{MHz}$. It was found that better agreement between theory and experiment can be achieved by allowing for a slight rotation of the \mathbf{g}_{a} and \mathbf{g}_{b} along the \mathbf{r}_{ab} vector to an angle $\xi=0.5^{\circ}$ and introducing an ordering of the molecules according to the orientation distribution [see reference 26] $P(\theta)=\exp (-U(\theta))$ with $U(\theta)=-\lambda(3$ $\cos 2 \theta-1) / 2$), where θ is the angle between the molecular z axis and the static magnetic field. The ordering parameter was fixed to $\lambda=-10$ (http://www.easyspin.org/). The simulation of the parallel mode X-band spectrum does not account for several resonances in the 250-500 mT range which are remnants from the allowed $\Delta \mathrm{M}_{\mathrm{S}}= \pm 1$ transitions. The little difference of the obtained parameters at the two frequencies are attributed to instrumental conditions

Figure S1. $\chi_{M} T$ vs T experimental data and calculated curves for 1 according to the models described in the text. The solid black line represents fit according to solution B. In the dimer of equilateral Cu_{3} cluster model $\chi_{M} T$ is considered per trimeric unit.

Figure S2. X-band EPR spectra of a frozen solution in THF of 1 at 4.2 and 10 K . The signals, scaled as $I \times T$, are super-imposable indicating that they arise from a ground state. EPR conditions: microwave frequency, 9.41 GHz ; microwave power, $0.7 \mu \mathrm{~W}$; modulation amplitude, $10 \mathrm{G}_{\mathrm{pp}}$.

Figure S3. Hyperfine patterns from an axial $S=1 / 2$ system in the $g_{\|}\left(>g_{\perp}\right)$ region with three $\mathrm{I}=3 / 2$ nuclei according to model I $\left(\mathbf{A}_{1}=-\mathrm{a} / 3, \mathbf{A}_{2}=\mathbf{A}_{3}=+2 \mathrm{a} / 3\right.$; green line) and model II ($\mathbf{A}_{1}=\mathbf{a}$, $\mathbf{A}_{2}=\mathbf{A}_{3}=0$; red line). $\mathrm{g}_{\|}=2.25 ; \mathrm{a}_{\|}=425 \mathrm{MHz}$. For the simulations an intrinsic line-width of σ_{L} $=0.8 \mathrm{mT}$ was assumed.

Figure S4. Dependence of the energy levels on the magnetic field for an effective $\mathrm{S}=1$ system characterized by the spin Hamiltonian $H_{\text {zfs }}=\mathrm{DS}_{2}{ }^{2}+\beta \mathrm{BgS}$ for two orientations of the magnetic field relative to the z-axis of the \boldsymbol{D}-tensor. $\mathrm{D}=-0.033 \mathrm{~cm}^{-1}, \boldsymbol{g}=[1.65,1.65,2.25]$. The blue and red vertical bars indicate the EPR transitions at X- and Q-band respectively.

Figure S5. Dependence of the energy levels on the magnetic field for two spins with $S_{a}=S_{b}=$ $1 / 2$ in the point dipolar approximation. $\boldsymbol{g}_{a, b}=[1.65,1.65,2.25], r_{a b}=4.4 \AA$. The two \mathbf{g}-tensors are assumed co-linear. The blue and red vertical bars indicate the EPR transitions at X- and Q-band respectively.

