SUPPORTING INFORMATION

Interactions between H-bonded [Cu^{II}₃(μ_3 -OH)]triangles; A combined magnetic susceptibility and EPR study.

Logesh Mathivathanan,^a Athanassios K. Boudalis,^{a,b} Philippe Turek ,^b Michael Pissas,^c Yiannis Sanakis,^c* Raphael G. Raptis^a*

Details for the simulation of the solide powder EPR spectra

In order to account for broadening effects we assume one nuclear spin per trimer with $I_a = I_b = 3/2$ with a hyperfine interaction $A_{||,i} = 280$ MHz. It was found that better agreement between theory and experiment can be achieved by allowing for a slight rotation of the g_a and g_b along the r_{ab} vector to an angle $\xi = 0.5^{\circ}$ and introducing an ordering of the molecules according to the orientation distribution [see reference 26] $P(\theta) = \exp(-U(\theta))$ with $U(\theta) = -\lambda(3 \cos 2\theta - 1)/2$), where θ is the angle between the molecular z axis and the static magnetic field. The ordering parameter was fixed to $\lambda = -10$ (http://www.easyspin.org/). The simulation of the parallel mode X-band spectrum does not account for several resonances in the 250 - 500 mT range which are remnants from the allowed $\Delta M_s = \pm 1$ transitions. The little difference of the obtained parameters at the two frequencies are attributed to instrumental conditions

Figure S1. $\chi_M T$ vs T experimental data and calculated curves for **1** according to the models described in the text. The solid black line represents fit according to solution **B**. In the dimer of equilateral Cu₃ cluster model $\chi_M T$ is considered per trimeric unit.

Figure S2. X-band EPR spectra of a frozen solution in THF of **1** at 4.2 and 10 K. The signals, scaled as $I \times T$, are super-imposable indicating that they arise from a ground state. EPR conditions: microwave frequency, 9.41 GHz; microwave power, 0.7 μ W; modulation amplitude,10 G_{pp}.

Figure S3. Hyperfine patterns from an axial S=1/2 system in the $g_{||}$ (> g_{\perp}) region with three I=3/2 nuclei according to model I ($A_1 = -a/3$, $A_2 = A_3 = +2a/3$; green line) and model II ($A_1 = a$, $A_2 = A_3 = 0$; red line). $g_{||} = 2.25$; $a_{||} = 425$ MHz. For the simulations an intrinsic line-width of $\sigma_L = 0.8$ mT was assumed.

Figure S4. Dependence of the energy levels on the magnetic field for an effective S = 1 system characterized by the spin Hamiltonian $H_{zfs} = DS_z^2 + \beta BgS$ for two orientations of the magnetic field relative to the z-axis of the **D**-tensor. D=-0.033 cm⁻¹, **g** = [1.65, 1.65, 2.25]. The blue and red vertical bars indicate the EPR transitions at X- and Q-band respectively.

Figure S5. Dependence of the energy levels on the magnetic field for two spins with $S_a = S_b = 1/2$ in the point dipolar approximation. $g_{a,b} = [1.65, 1.65, 2.25]$, $r_{ab} = 4.4$ Å. The two g-tensors are assumed co-linear. The blue and red vertical bars indicate the EPR transitions at X- and Q-band respectively.