Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supporting information for

Photoinduced Curtius rearrangements of fluorocarbonyl azide,

FC(O)N₃: a QM/MM nonadiabatic dynamics simulation

Bin-Bin Xie^{1,2*}, Cheng-Xing Cui³, Wei-Hai Fang^{1,2*}, Ganglong Cui²

1) Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China;

 2) Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, China
3) School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology,

Xinxiang 453003, People's Republic of China

E-mail: binbinxie@mail.bnu.edu.cn;fangwh@bnu.edu.cn

Table of Contents

- 1. Zhu-Nakamura method
- 2. The simulated absorption spectrum for the FC(O)N3 system in gas phase
- 3. The choice of the active space
- 4. The choice of QM and MM regions
- 5. Cartesian coordinates of critical structures at QM(CASPT2)/MM level

1. Zhu-Nakamura method

Trajectory-based nonadiabatic dynamics simulations involved the lowest four singlet states and are carried out using the recently developed surface-hopping method proposed by Zhu et al.¹ In this dynamics simulation approach, the system is merely propagated in an electronic state at any time; however, near quasi-degenerate regions, it can jump between different potential energy surfaces. The nonadiabatic transition probability is computed according to the Landau-Zener formula improved by Zhu and Nakamura,²⁻⁴

$$p = \exp(-(\frac{\pi}{4\sqrt{a^2}}\sqrt{\frac{2}{b^2 + \sqrt{|b^4 \pm 1|}}}))$$
(1)

in which two unitless parameters, i.e., effective coupling and collision energy, are written as

$$a^{2} = \frac{\mathbf{h}^{2}}{2\mu} \frac{\sqrt{|F_{2}F_{1}|} |F_{2} - F_{1}|}{(2V_{12})^{3}}$$
(2)

and

$$b^{2} = (E_{t} - E_{x}) \frac{|F_{2} - F_{1}|}{\sqrt{|F_{2}F_{1}|}(2V_{12})}$$
(3)

where F_1 and F_2 are two mass-scaled one-dimensional diabatic forces, V_{12} is diabatic coupling, \square is the reduced mass of the diatomic molecule, E_x is the energy at the crossing point, and E_t is the potential energy plus kinetic energy component along the hopping vector direction. Finally, the mass-scaled one-dimensional diabatic forces in Eqs. (2) and (3) are converted from mass-scaled multi-dimensional diabatic forces based on

$$\frac{\sqrt{|F_2F_1|}}{\sqrt{\mu}} = \sqrt{|\sum_{i}^{N} \frac{1}{m_i} \sum_{\alpha = x, y, z} F_2^{i\alpha} F_1^{i\alpha}|}$$
(4)

and

$$\frac{|F_2 - F_1|}{\sqrt{\mu}} = \sqrt{\sum_{i}^{N} \frac{1}{m_i} \sum_{\alpha = x, y, z} (F_2^{i\alpha} - F_1^{i\alpha})^2}$$
(5)

in which N is the number of nuclei in a system, m_i is the i-th atomic mass, $F_1^{i\alpha}$ and $F_2^{i\alpha}$ are multi-dimensional diabatic forces of the ith atom (α : x, y, and z) related to the involved two states. These diabatic forces can be further converted from multi-dimensional adiabatic forces, which are directly calculated by the electronic structure packages available. The detailed description on definitions of the hopping direction and the momentum change at a hopping region can be found in recent works by Zhu and co-workers.^{1,5} This Zhu-Nakamura nonadiabatic dynamics method has been recently coded, as a module, into our own generalized trajectory-based surface hopping (GTSH) package.⁶⁻⁷ Compared with the fewest switches surface-hopping method developed by Tully and Preston,⁸⁻¹⁰ the largest advantage of the Zhu-Nakamura method is that it does not need to compute expensive nondiabetic coupling vectors, in particular for those electronic structure methods incapable of efficiently computing these vectors.

2. The simulated absorption spectrum for the FC(O)N₃ system in gas phase

Figure S1. The simulated absorption spectrum for the $FC(O)N_3$ system in gas phase.

As the gaseous precursor FC(O)N₃ shows moderate UV absorptions, we firstly explored the electronic structures and vertical excitation energies of several of the lowest excited singlet states (i.e. S₁, S₂, and S₃ states) at the Frank-Condon point at the most stable S₀ conformer S0-syn in gas phase. According to the vertical excitation energies and corresponding oscillator strengths, we have simulated absorption spectrum for the FC(O)N₃ system in gas phase (see Fig. S1 and Table S1). It is clear that the absorption spectrum calculated by using CASPT2 method well agrees with the experimental spectrum (205 nm [1840 mol⁻¹•cm⁻¹] and 195 nm [1300 mol⁻¹•cm⁻¹]), which is computed to be 211.1 nm [1800 mol⁻¹•cm⁻¹] and 184.6 nm [800 mol⁻¹•cm⁻¹].

Table S1. The CASPT2 computed vertical excitation energies (nm) and fitted molar extinction coefficients $[(mol^{-1} \cdot cm^{-1})]$ of the lowest three excited singlet states.

States	Energies ^a	Exp ^b
S ₁ -FC	242.2	_
S ₂ -FC	211.1 [1800]	205 [1840]
S ₃ -FC	184.6 [800]	195 [1300]

^a calculated in gas phase; ^b measured in gas phase¹¹.

3. The choice of the active space

Prior to production dynamics simulations, we have done a lot of benchmarks on different active spaces including CASPT2 (10, 8), CASPT2 (12, 9), and CASPT2 (14, 10) (see Table S2). It is clear that molecular orbitals located on the carbonyl group are not significantly involved in the S₁, S₂, and S₃ states. Moreover, we have found that adding more n, π , and π^* orbitals of the carbonyl group into the active space do not improve the results of absorption spectra (see Table S3). Taken together, the CASPT2 (10, 8) method is finally adopted concerning a balanced accuracy and efficiency.

Т	Table S2. CASPT2(14,10) with molecular orbitals of the carbonyl group					
		· · ·	• , ?		Ч.	
16	17	18	19	20	21	
•ح	•	•	•		1.139	
22H	23L	24	25		1.341 1.397	
S0-syn	energy(kcal/mol)	energy(nm)	orbital	weight	6	
root1	0.0		2222222000	0.828377		
root2	118.6	241.2	222222u0d0	0.920955		
root3	136.2	210.0	222222ud00 22222u20d0	0.498482 0.414735		
root4	155.1	184.4	22222u2d00	0.915229		

Table S3. CASPT2(10,8) with molecular orbitals of the carbonyl group				
S		•	~	1.142
18	19	20	21	1.311
~	•	• _		1.343
22H	23L	24	25	
S0-syn	energy(kcal/mol)	energy(nm)	orbital	weight
root1	0.00		22222000	0.851619
root2	122.50	233.48	222u2d00	0.849762
root3	123.57	231.45	222u20d0	0.662684
root4	144.78	197.54	2u2220d0	0.81271
root5	164.47	173.89	2u222d00	0.747846

4. The choice of QM and MM regions

Table S4 gives the detailed energies of QM and MM subsystems of S0-anti and the ΔE_{QM} and ΔE_{MM} between S0-syn and S0-anti are estimated to be 11.79 and 3.23 kcal/mol, respectively. In our opinion, the steric and cage effects of the Ar matrix are more significant than the van der Waals interaction. Therefore, it is a safe treatment without including argon atoms in the QM region in the present work.

Previously, we have performed the nonadiabatic dynamics modelling about the photodissociation dynamics of $CH_3C(O)SH$ in the argon matrix at 15 K (*J. Chem. Phys. 2015, 143, 194303*). More recently, Martínez et al. studied the photochemistry of the sulfine in the Ar matrix at 11 K (*Angew. Chem. Int. Ed. 2016, 55, 14993*). Both of these theoretical calculations provide dependable calculation results, where the QM region merely contains the $CH_3C(O)SH$ or the sulfine molecules and the MM region the argon atoms.

Table S4. The detailed energies of QM and MM subsystems of S0-syn and S0-anti			
Structures	QM Energy	MM Energy	Total Energy
	[FC(O)N ₃]	[Ar matrix]	
S0-syn	-376.396869 a.u.	-3.952123456 a.u.	-380.3489924 a.u.
S0-anti	-376.3780651 a.u.	-3.946969371 a.u.	-380.3250344 a.u.
Δ E(anti-syn)	11.79 kcal/mol	3.23 kcal/mol	15.03 kcal/mol

5. Cartesian coordinates of critical structures at QM(CASPT2)/MM level

S0-syn			
С	-1.104623700	-0.267117400	-0.166787100
0	-1.552581400	0.808531500	-0.446829900
Ν	0.230277600	-0.649958400	0.012493100
Ν	1.028417700	0.316865800	-0.139565900
Ν	1.866937300	1.083971200	-0.239986700
F	-1.853653600	-1.353769700	0.033145900
S0-anti			
С	-1.628667100	0.066412400	-0.172516800
0	-2.204754000	1.029840900	-0.506404400
Ν	-0.214812900	-0.052669100	-0.107924300

N	0.293845300	-1.165348400	0.084189100
N	0.947609400	-2.093861600	0.241793800
F	-2.213856600	-1.089409800	0.230370600
S0-nitr			
С	-1.505176900	-0.605563100	-0.082250300
0	-1.484764600	0.620324000	-0.443758800
Ν	-0.259844400	-0.856500600	-0.029950300
Ν	1.567685900	1.725003300	-0.159081400
N	2.455898700	1.045016600	-0.141418000
F	-2.572006200	-1.327859100	0.147885000
SO-cya			
С	-3.997285400	1.270932300	1.792404400
0	-4.339321100	1.334563700	2.913627100
Ν	-3.700710500	1.476020100	0.589086800
Ν	-1.415877800	-1.804274900	-0.950178600
Ν	-0.832149000	-2.219810700	-1.816861900
F	-3.203585500	0.303492500	-0.045547500
S1-syn			
С	-1.915059400	-0.047520300	-0.210825500
0	-1.521536700	1.042821600	-0.500931400
Ν	-1.161264400	-1.109555300	0.348307800
Ν	0.175353300	-1.017960700	-0.207781300
Ν	1.061094700	-1.597307000	0.338672800
F	-3.189424700	-0.438013700	-0.282376400
S1-syn-i	so		
С	-1.894769446	-0.037417588	-0.207438237
0	-1.679568046	1.102755831	-0.591360122
Ν	-1.009697379	-1.066415057	0.172933501
Ν	0.372619994	-0.692231032	0.410833220
Ν	0.742239403	0.411898988	-0.064907185
F	-3.118196874	-0.544669964	-0.142714130
S1-anti			
С	-1.264062857	0.581371017	-0.439282768
0	-1.117084919	1.742857284	-0.746707442
Ν	-0.163687999	-0.193798018	-0.088821185
Ν	-0.570964028	-1.524262081	0.286766384
N	0.279961172	-2.304990795	0.589578691
F	-2.464792687	-0.007938145	-0.426570127

S1-anti-iso				
С	-1.823979242	-0.193782343	-0.180216400	
0	-2.953934513	-0.608365278	-0.207936620	
Ν	-0.822294939	-1.031899260	0.261791647	
Ν	0.549317450	-0.780451638	-0.143664785	
Ν	0.893375747	0.371750247	-0.043569953	
F	-1.490798098	1.032722491	-0.592360069	
S1-nitr				
С	-1.450862700	-0.464719500	-0.123893800	
0	-1.620014600	0.691207900	-0.458146300	
Ν	-0.211570500	-0.994182000	0.018397700	
Ν	1.499863300	1.639051300	-0.163463700	
Ν	2.456630600	1.062986100	-0.138878400	
F	-2.463226500	-1.309472800	0.129026500	
S2-syn				
С	-1.930796452	-0.077871735	-0.215260325	
0	-1.572487234	1.014580395	-0.531056311	
Ν	-0.984640323	-1.024366491	0.104634719	
Ν	0.327527479	-0.844438885	-0.230211728	
Ν	0.815670504	-1.737793860	0.466650200	
F	-3.184999694	-0.494916397	-0.117878670	
S2-syn-is	0			
С	-1.966184300	-0.086393000	-0.207344200	
0	-1.610622000	1.020708800	-0.529614300	
Ν	-0.956865900	-0.948069400	0.106035000	
Ν	0.368997900	-0.766560800	0.189254100	
Ν	0.760822300	0.405524000	-0.052603500	
F	-3.199475300	-0.522026500	-0.139787500	
S2-anti				
С	-1.150578622	0.505015448	-0.386867818	
0	-1.239919705	1.778597586	-0.772024298	
Ν	-0.099971606	-0.180037453	-0.062724130	
Ν	-0.577857181	-1.489316645	0.266802110	
Ν	0.136997345	-2.367036450	0.614372263	
F	-2.380377316	0.012628582	-0.390220822	
S2-anti-is	0			
С	-1.140921000	0.379191000	-0.351301300	
0	-1.082037600	1.655818500	-0.714337200	
Ν	-0.174367600	-0.398062800	-0.015175900	
Ν	-0.578282300	-1.710474500	0.337847000	

N	-1.690596400	-2.141943000	0.365548700
F	-2.420539700	0.019068600	-0.392319500
S3-syr	ı		
С	-1.049134000	-0.319401000	-0.157600000
0	-1.451082000	0.774346000	-0.434707000
N	0.285038000	-0.638429000	0.082579000
N	1.179360000	0.338428000	-0.186630000
N	1.762864000	1.206742000	0.425339000
F	-1.791714000	-1.397457000	0.035513000
S3-syr	n-iso		
С	-1.029388461	-0.311905658	-0.145034483
0	-1.475039402	0.776197039	-0.447471185
N	0.299844989	-0.642948820	-0.013824027
N	1.220762153	0.370146113	-0.035118666
N	1.837488538	0.849071377	-0.951949904
F	-1.780849703	-1.377631031	0.038061875
S3-an	ti		
С	-1.269924000	0.018138600	-0.153968300
0	-1.739376200	1.083840400	-0.416011000
N	0.101329200	-0.217036300	-0.045988900
N	0.544558700	-1.406111900	0.432509700
N	0.938555200	-2.448341800	-0.044689300
F	-1.953033200	-1.120472400	0.058697800
S3-an	ti-iso		
С	-1.040455527	-0.327773139	-0.130359110
0	-1.968898764	-1.070585838	-0.051412907
N	0.303037104	-0.638030157	-0.024783457
N	1.220844689	0.372069289	-0.028575085
N	1.842145842	0.846439912	-0.946126321
F	-1.158474569	1.000465534	-0.331685112
S1S0-:	syn		
С	-1.901684848	-0.058222002	-0.196211044
0	-1.517989116	1.037107483	-0.496754756
N	-1.129628346	-1.118849760	0.347671944
N	0.169100372	-0.998236447	-0.262613547
N	1.013171660	-1.589250103	0.372650074
F	-3.181636497	-0.439377273	-0.279751429

S1S0-syn-iso

С	-1.927884872	-0.021393334	-0.201809454
0	-1.703435740	1.113822081	-0.560370780
N	-1.006696951	-1.064104633	0.104948782
N	0.406805992	-0.745555989	0.222141783
N	0.810530591	0.370945719	-0.068682118
F	-3.177427461	-0.560891653	-0.139936588
S1S0-a	inti		
С	-1.876859982	-0.019431527	-0.210740342
0	-3.049859735	-0.148606810	-0.370568593
N	-1.102251848	-1.062449405	0.264197976
N	0.217211670	-1.089805752	-0.347778777
N	0.907402301	-1.867132587	0.237569007
F	-1.186627842	1.107281492	-0.458782368
S1S0-a	inti-iso		
С	-1.968001704	0.010948961	-0.159961364
0	-3.119100162	-0.196287607	-0.441941851
N	-1.182294565	-1.078140875	0.332783420
N	0.178292933	-1.044438517	-0.140616166
N	0.698520813	-0.256656118	-0.837642547
F	-1.346625545	1.215367471	-0.336718041
S1S0-r	nitr		
С	-1.090249276	-0.496934243	-0.094449044
0	-1.468122870	0.655411973	-0.325048674
N	0.149611899	-0.971017562	0.121264504
N	1.253783249	1.363083765	-0.422135465
N	2.270060144	1.051078032	-0.072757478
F	-1.949338460	-1.587833724	-0.040290935
S2S1-s	yn		
С	-1.919704275	-0.059524755	-0.232833970
0	-1.615370394	1.040910984	-0.549530492
Ν	-0.971079489	-0.999248282	0.088816751
Ν	0.330328067	-0.822276816	-0.188645000
N	0.806101342	-1.786950712	0.453148471
F	-3.147394970	-0.528740205	-0.105273753
S2S1-s	yn-iso		
С	-1.958136885	-0.018949081	-0.220944471
0	-1.779075036	1.115401534	-0.547656521
N	-0.972095713	-0.896137591	0.117288369
N	0.384182597	-0.795889273	0.194520576

N	0.899109270	0.275297814	-0.070474988
F	-3.139495690	-0.625511439	-0.153562200
S2S1-	anti		
С	-1.218500603	0.602669065	-0.451383943
0	-1.028195889	1.750326371	-0.744272618
N	-0.322263832	-0.376625070	-0.063196321
N	-0.708183452	-1.583673438	0.466343803
N	0.385117501	-2.149464539	0.474621789
F	-2.420999599	0.025353321	-0.430720010
S2S1-	anti-iso		
С	-1.196916317	0.547232507	-0.412955045
0	-0.983063855	1.683667029	-0.716492103
N	-0.337675979	-0.453779755	-0.004424269
N	-0.515008321	-1.752227012	0.353420061
N	-1.650336981	-2.195868048	0.382598354
F	-2.402692582	-0.023108908	-0.371802829

References:

1. Yu, L.; Xu, C.; Lei, Y. B.; Zhu, C. Y.; Wen, Z. Y. Trajectory-Based Nonadiabatic Molecular Dynamics without Calculating Nonadiabatic Coupling in the Avoided Crossing Case: Trans \leftrightarrow Cis Photoisomerization in Azobenzene. *Phys. Chem. Chem. Phys.*, **2014**, *16*, 25883-25895.

2. Zhu, C. Y.; Nakamura, H. Theory of Nonadiabatic Transition for General Two-State Curve Crossing Problems. I. Nonadiabatic Tunneling Case. J. Chem. Phys., **1994**, 101, 10630-10647.

3. Zhu, C. Y.; Nakamura, H. Theory of Nonadiabatic Transition for General Two-State Curve Crossing Problems. II. Landau–Zener Case. *J. Chem. Phys.*, **1995**, *102*, 7448-7461. 4. Zhu, C. Y.; Nobusada, K.; Nakamura, H. New Implementation of the Trajectory Surface Hopping Method with Use of the Zhu–Nakamura Theory. *J. Chem. Phys.*, **2001**, *115*, 3031-3044.

5. Yu, L.; Xu, C.; Zhu, C. Y. Probing the $\pi \rightarrow \pi^*$ Photoisomerization Mechanism of Cis-Azobenzene by Multi-State *Ab Initio* on-the-fly Trajectory Dynamics Simulation. *Phys. Chem. Chem. Phys.*, **2015**, *17*, 17646-17660.

6. Xie, B.-B.; Liu, L. H.; Cui, G. L.; Fang, W.-H.; Cao, J.; Feng, W.; Li, X.-Q. *Ab Initio* Implementation of Quantum Trajectory Mean-Field Approach and Dynamical Simulation of the N2CO Photodissociation. *J. Chem. Phys.*, **2015**, *143*, 194107.

7. Li, C.-X.; Guo, W.-W.; Xie, B.-B.; Cui, G. L. Photodynamics of Oxybenzone Sunscreen: Nonadiabatic Dynamics Simulations. *J. Chem. Phys.*, **2016**, *145*, 074308.

8. Tully, J. C.; Preston, R. K. Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H⁺ with D₂. *J. Chem. Phys.*, **1971**, *55*, 562-572.

9. Hammes-Schiffer, S.; Tully, J. C. Proton Transfer in Solution: Molecular Dynamics with Quantum Transitions. *J. Chem. Phys.*, **1994**, *101*, 4657-4667.

10. Cui, G. L.; Thiel, W. Generalized Trajectory Surface-Hopping Method for Internal Conversion and Intersystem Crossing. *J. Chem. Phys.*, **2014**, *141*, 124101.

Barbatti, M.; Aquinoab, A. J. A.; Lischka, H. The UV Absorption of Nucleobases:
Semi-Classical Ab Initio Spectra Simulations. *Phys. Chem. Chem. Phys.*, **2010**, *12*,
4959–4967