Supplementary Material

Naturally occurring quaternary benzo[c]phenanthridine alkaloids selectively stabilize G-quadruplexes

Petra Jarosova^a, Petr Paroulek^a, Michal Rajecky^a, Veronika Rajecka^a, Eva Taborska^b, Ramon Eritja^c, Anna Aviñó^c, Stefania Mazzini^d, Raimundo Gargallo^e, Petr Taborsky^{*a}

^a Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic

^b Faculty of Medicine, Masaryk University, Kamenice 5, Brno 62500, Czech Republic

^c Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain.

^d Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, Milan 20133, Italy;

^e Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí I Franquès 1-11, 08028 Barcelona, Spain

Contents:

- Figure S1 Chemical structures of the alkaloids studied in this work.
- Figure S2 CD spectra of HT22 and ckit21T21 with ligands.
- Figure S3 Examples of CD spectra recorded in the wavelength range from 220 to 600 nm.
- **Figure S4** Examples of heating and cooling traces for HT22, ckitG1T21 and several QBA:GQ mixtures.
- Figure S5 CD-monitored unfolding experiment of ckit21T21.
- Figure S6 Examples of estimation of binding stoichiometries by means of Job plots.
- Table S1
 Fluorescence intensity of each QBA:DNA complex- competitive dialysis.
- **Table S2**Inter-residue NOE interactions of ckit21T12T21 in the complex with chelerythrine.
- **Table S3**Inter-residue NOE interactions of Pu22-T14T23 in the complexes with sanguilutine and
chelerythrine.
- Table S4
 ¹ H chemical shift values for the complex of sanguilutine with Pu22-T14T23.
- **Table S5**¹ H chemical shift values for the complex of chelerythrine with Pu22-T14T23.

Figure S1. Chemical structures of the alkaloids studied in this work.

Macarpine (MA)

Sanguinarine (SG)

Sanguirubine (SR)

Chelirubine (CHR)

Chelerythrine (CHE)

Figure S2. CD spectra of HT22 and ckit21T21 with ligands.

 C_{DNA} = 2 μ M, C_{QBA} = 4 μ M, 10 mM phosphate buffer, 5 mM KCl. Spectra measured at 20°C. All other experimental conditions as detailed in the main text.

Figure S3. Examples of CD spectra recorded in the wavelength range from 220 to 600 nm.

 $C_{DNA} = 2 \ \mu$ M, $C_{QBA} = 4 \ \mu$ M, 10 mM phosphate buffer, 5 mM KCl. Spectra measured at 20°C. All other experimental conditions as detailed in the main text. In all cases, there is not an evidence of any induced CD signal in the visible region due to the interaction of the ligand with either HT22 or ckit21T21 GQ structures.

Figure S4. Examples of heating and cooling traces for HT22, ckitG1T21 and several QBA:GQ mixtures.

Figure S5. CD-monitored unfolding experiment of ckit21T21.

Figure S6. Examples of estimation of binding stoichiometries by means of Job plots. (a) HT22 + chelirubine (b) ckit21T21 + sanguinarine

|--|

	H1/H2/Me	$\Delta \delta^{b}$	H6/H8	$\Delta \delta^{b}$
T4	n.d.	-	n.d.	-
G5	n.d.	-	n.d.	-
A6	n.d.	-	7.95	+0.30
G7	11.04	- 0.72	8.08	+0.08
G8	10.76	- 0.48	7.66	- 0.08
G9	10.10	- 0.55	7.67	- 0.07
T10	n.d.	-	n.d.	-
G11	10.95	- 0.76	n.d.	-
G12	10.90	- 0.60	7.66	-0.02
G13	10.36	- 0.69	7.73	- 0.18
T14	1.98	+0.06	7.68	+0.03
A15	8.38	+0.11	8.57	+0.02
G16	n.d.	-	8.19	+0.08
G17	10.80	- 0.45	7.60	- 0.20
G18	10.28	- 0.74	7.73	- 0.06
T19	2.01	+0.02	7.88	-0.02
G20	11.08	- 0.20	7.85	- 0.04
G21	11.08	- 0.29	7.83	- 0.07
G22	10.43	- 0.61	7.71	-0.10
T23	1.35	- 0.13	6.92	- 0.22
A24	n.d.	-	7.92	+0.15
A25	7.49	+0.10	7.37	-0.13

^a Measured at 25°C in ppm (δ) from external DSS. Solvent H₂O-D₂O (90:10 v/v), 25 mM phosphate buffer, 70 mM KCl, pH 6.9, R = 3. Other ribose protons showing significant shift variations: T23 H-1'= -0.34. ^b $\Delta\delta = \delta_{bound} - \delta_{free}$.

	H1/H2/Me	$\Delta \delta^{b}$	H6/H8	$\Delta \delta^{b}$	H1'	$\Delta \delta^{b}$
T4	n.d.	-	n.d.	-	n.d.	-
G5	n.d.	-	n.d.	-	n.d.	-
A6	n.d.	-	n.d.	-	n.d.	-
G7	11.10	- 0.66	8.02	0.00	6.03	-0.03
G8	10.72	- 0.50	7.60	- 0.15	6.03	-0.10
G9	10.09	- 0.56	7.63	- 0.12	n.d.	-
T10	1.95	-0.04	7.68	-0.14	6.28	-0.24
G11	n.d.	-	n.d.	-	n.d.	-
G12	10.84	- 0.66	7.63	- 0.27	n.d.	-
G13	10.52	- 0.53	7.72	- 0.14	n.d.	-
T14	1.89	-0.03	7.58	-0.07	6.25	+0.02
A15	8.35	-0.18	8.55	-0.02	6.64	-0.04
G16	10.63	- 1.36	8.18	+0.07	6.22	+0.05
G17	10.92	- 0.33	7.82	+0.02	n.d.	-
G18	10.52	- 0.50	7.60	- 0.18	6.03	-0.39
T19	2.00	+0.01	7.89	+0.03	6.54	+0.02
G20	10.92	- 0.36	n.d.	-	n.d.	-
G21	10.98	- 0.39	7.91	0.00	5.80	-0.24
G22	10.28	- 0.76	7.79	+0.18	6.00	-0.14
T23	1.45	- 0.03	7.03	- 0.11	5.63	- 0.27
A24	n.d.	-	7.93	+0.16	5.68	- 0.07
A25	n.d.	-	7.33	+0.03	5.40	-0.20

Table S2. ¹H chemical shift values for the complex of chelerythrine with Pu22-T14T23.^a

^{a,b} See footnotes (a) and (b) of **Table S1**.

Chelerythrine	Pu22-T14T23 ^a	$\Delta \delta^{b}$	ckit21T12T21 ^c	$\Delta \delta^{b}$
H1	6.54	-0.58	6.54	-0.58
2,3 O-CH ₂ -O	5.91	-0.31	5.91	-0.31
H4	7.27	-0.53	7.30	-0.50
H6	9.11	-0.50	9.20	-0.41
H9	n.d.	-	n.d.	-
H10	n.d.	-	n.d.	-
H11	7.68	-0.42	7.58	-0.52
H12	7.23	-0.57	7.24	-0.56
NCH ₃	4.45	-0.45	4.46	-0.54
7-0CH ₃	3.90	-0.10	n.d.	-
8-OCH ₃	3.90	-0.30	n.d.	-

Table S3. Chemical shift values of chelerythrine in the complex with Pu22-T14T23 and ckit21T12T21.

^a Measured at 25°C in ppm (δ) from external DSS. Solvent H₂O-D₂O(90:10 v/v), 25 mM phosphate buffer, 70 mM KCl. For Sanguilutine complex aromatic proton H6 and NCH₃ lie at 9.10 ppm and 4.55 ppm respectively. Other aromatic protons were not assigned and lie around 6.8/7.2 ppm. ^b $\Delta \delta = \delta_{bound} - \delta_{free}$. ^c Measured at 25°C in ppm (δ) from external DSS. Solvent H₂O-D₂O (90:10 v/v), 5 mM K-phosphate buffer, 20 mM KCl, pH 6.9.

	SG (559 nm)	CHE (554 nm)	CHR (596 nm)	MA (589 nm)	SL (593 nm)	SR (591 nm)
Blank	0.9	0.6	0.2	0.3	0.3	0.5
HT22	13.5	10.0	3.7	12.6	14.4	5.7
ckit21T21	18.1	15.3	4.3	17.0	19.9	8.9
Т20	2.8	3.0	0.5	2.4	1.0	1.4
ds26	7.0	6.8	2.0	8.6	8.5	4.1
Dickerson	8.5	6.6	2.0	9.9	8.3	2.6

Table S4. Fluorescence intensity of each QBA:DNA complex- competitive dialysis.

Table S5. Inter-residue NOE interactions of ckit21T12T21 in the complex with chelerythrine.Solvent H_2O-D_2O (90:10 v/v), 5 mM phosphate buffer, 20 mM KCl, pH 6.9, R = 3.

G-tetrad I	G-tetrad II	Tetrad III
G4H1G8H8	G3H1G7H8	G18H1G2H8
G8H1G16H8	G7H1G15H8	
G16H1G20H8	G15H1G19H8	
G20H1G4H8	G19H1G3H8	

Table S6. Inter-residue NOE interactions of Pu22-T14T23 in the complexes with sanguilutine and chelerythrine.^a

G-tetrad I	G-tetrad II	Tetrad III
G11H1G16H8	G8H1G12H8	G9H1G13H8
G20H1G7H8	G12H1G17H8	G13H1G18H8
G16H1G20H8 ^b	G17H1G21H8	G18H1G22H8
G7H1G11H8 ^c	G21H1G8H8	G22H1G9H8

^a Acquired at 25°C in H_2O-D_2O (90:10 v/v), 25 mM phosphate buffer, 70 mM KCl, pH 6.9.

^b Not detect in sanguilutine complex.

^c Not detect in chelerythrine complex.