The influence of heteroatoms substitution in cross-conjugation and their effect on the photovoltaic performance of DSSCs - A computational investigation on linear vs. cross-conjugated anchoring units

Mahalingavelar Paramasivam^{\dagger ,*}, Ramesh kumar Chitumalla^{\ddagger}, Joonkyung Jang^{\ddagger} and Ji Ho

Youk[†]

[†] Department of Applied Organic Materials Engineering, Inha University, Incheon 22212, Republic of Korea.

[‡]Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Republic of Korea

Table of contents

Fig.S1	Energy levels of the bare acceptor units obtained from the B3LYP/6-311g(d,p) level	S4
	of theory.	
Fig.S2	Energy levels of the dyes obtained from the CAM-B3LYPand PBE1PBE/6-311g(d,p)	S4
	level of theory.	
Fig.83	HOMO-3, HOMO-2, LUMO+1 and LUMO+2 of the isolated dyes	S5
Fig.S4	Charge transfer direction of the linear and cross-conjugated dyes	S 5
Fig.S5	Electrochemical band gap and DFT computed values of the previously reported dyes	S6
Fig.S6	Schematic representation illustrating the extent of π -orbitals overlap needed to	S 7
	influence the energy levels and photophysical properties.	
Fig.S7	TDDFT simulated spectra of B2 and B2F-comparison	S7
Fig.S8	A series of the bridged dyes used for the investigation of π -delocalization pathway.	S8
Fig.89	Excited state geometry of the dyes	S8
Fig.S10	Mulliken population analysis of the dyes in the ground and excited state.	S9
Fig.S11	Energy levels comparison of the various donors to evaluate the donor strength	S9
Fig.S12	Relative percentage C_{AO} transformation of X_{β} - C_{α} - C_{b} - C_{v} from the ground to excited	S10
	state.	
Fig.S13	Geometrical coordinates of the dyes	S11
Fig.S14	DFT -TDDFT results of B1, B2F dyes and their adsorption on $(TiO_2)_{16}$	S11
Fig.815	DOS-PDOS of the B1 and B2F dyes@(TiO ₂) ₁₆	S12
Fig.S16	Optimized geometries of the bridged dyes@TiO2 with 'A' anchoring mode	S12
Fig.S17	HOMO and LUMO of the bridged dyes@TiO ₂ with 'A' anchoring mode.	S13
Fig.S18	HOMO-3, HOMO-2 and HOMO-1 of the dyes@TiO ₂	S13
Fig.S19	TDDFT results of dyes@TiO2 obtained from CAM-B3LYP/ 6-311g(d, p)/ C-	S14
	PCM(THF) level of theory	

Fig.S20TDDFT results of dyes@TiO2 obtained from B3LYP/ 6-311g(d, p)/ C-PCM(THF) level of theoryS14Fig.S21TDDFT comparison of dyes@TiO2 obtained from B3LYP, CAM-B3LYP, M062X/ $3-21g(d)/$ C-PCM(THF) level of theoryS15Fig.S22Adsorption angle and the molecular coverage distance of the dyes upon TiO2. adsorptionS16Table S1-S2TDDFT results of the isolated dyes obtained from B3LYP and CAM-B3LYP functionalsS16-S17Table S3Bond length difference, hybridization, delocalization and stabilization energyS17Table S4CAO population values of X_{β} -Ca ⁻ Cb-Cv in the ground and excited stateS18Table S5Hybridization contribution of the atoms obtained from NBO analysisS19Table S6Energy Levels, computed excitation energies, oscillator strength, major electronic transitions, ground and transient dipole moment of the dyes@TiO2S20-S21Table S9-S11TDDFT results of the dyes@TiO2 from B3LYP, CAM-B3LYP and M062X/3-21g(d) level of theoryS22-S24			
Fig.S21TDDFT comparison of dyes@TiO2 obtained from B3LYP, CAM-B3LYP, M062X/ 3-21g(d)/ C-PCM(THF) level of theoryS15Fig.S22Adsorption angle and the molecular coverage distance of the dyes upon TiO2. adsorptionS16Table S1-S2TDDFT results of the isolated dyes obtained from B3LYP and CAM-B3LYP functionalsS16-S17Table S3Bond length difference, hybridization, delocalization and stabilization energyS17Table S4 C_{AO} population values of X_{β} - C_{α} - C_{b} - C_{v} in the ground and excited stateS18Table S5Hybridization contribution of the atoms obtained from NBO analysisS19Table S6Energy Levels, computed excitation energies, oscillator strength, major electronic transitions, ground and transient dipole moment of the dyes@TiO2S20Table S7-S8TDDFT results of the dyes@TiO2 from B3LYP and CAM-B3LYP/6-311G(d.p)S20-S21Table S9-S11TDDFT results of the dyes@TiO2 from B3LYP, CAM-B3LYP and M062X/3-21g(d) level of theoryS22-S24	Fig.S20	TDDFT results of dyes@TiO ₂ obtained from B3LYP/ 6-311g(d, p)/ C-PCM(THF) level of theory	S14
Fig.S22Adsorption angle and the molecular coverage distance of the dyes upon TiO2. adsorptionS16Table S1-S2TDDFT results of the isolated dyes obtained from B3LYP and CAM-B3LYP functionalsS16-S17Table S3Bond length difference, hybridization, delocalization and stabilization energyS17Table S4 C_{AO} population values of X_{β} - C_{α} - C_{b} - C_{v} in the ground and excited stateS18Table S5Hybridization contribution of the atoms obtained from NBO analysisS19Table S6Energy Levels, computed excitation energies, oscillator strength, major electronic transitions, ground and transient dipole moment of the dyes@TiO2S20Table S7-S8TDDFT results of the dyes@TiO2 from B3LYP and CAM-B3LYP/6-311G(d.p)S20-S21Table S9-S11TDDFT results of the dyes@TiO2 from B3LYP, CAM-B3LYP and M062X/3-21g(d) level of theoryS22-S24	Fig.S21	TDDFT comparison of dyes@TiO ₂ obtained from B3LYP, CAM-B3LYP, M062X/ 3-21g(d)/ C-PCM(THF) level of theory	S15
Table S1-S2TDDFT results of the isolated dyes obtained from B3LYP and CAM-B3LYP functionalsS16-S17Table S3Bond length difference, hybridization, delocalization and stabilization energyS17Table S4 C_{AO} population values of X_{β} - C_{α} - C_{b} - C_{v} in the ground and excited stateS18Table S5Hybridization contribution of the atoms obtained from NBO analysisS19Table S6Energy Levels, computed excitation energies, oscillator strength, major electronic transitions, ground and transient dipole moment of the dyes@TiO2S20Table S7-S8TDDFT results of the dyes@TiO2 from B3LYP and CAM-B3LYP/6-311G(d,p)S20-S21Table S9-S11TDDFT results of the dyes@TiO2 from B3LYP, CAM-B3LYP and M062X/3-21g(d) level of theoryS22-S24	Fig.S22	Adsorption angle and the molecular coverage distance of the dyes upon TiO_{2} adsorption	S16
Table S3Bond length difference, hybridization, delocalization and stabilization energyS17Table S4 C_{AO} population values of X_{β} - C_{α} - C_{b} - C_{v} in the ground and excited stateS18Table S5Hybridization contribution of the atoms obtained from NBO analysisS19Table S6Energy Levels, computed excitation energies, oscillator strength, major electronic transitions, ground and transient dipole moment of the dyes@TiO2S20Table S7-S8TDDFT results of the dyes@TiO2 from B3LYP and CAM-B3LYP/6-311G(d,p)S20-S21Table S9-S11TDDFT results of the dyes@TiO2 from B3LYP, CAM-B3LYP and M062X/3-21g(d) level of theoryS22-S24	Table S1-S2	TDDFT results of the isolated dyes obtained from B3LYP and CAM-B3LYP functionals	S16-S17
Table S4 C_{AO} population values of X_{β} - C_{α} - C_{b} - C_{ν} in the ground and excited stateS18Table S5Hybridization contribution of the atoms obtained from NBO analysisS19Table S6Energy Levels, computed excitation energies, oscillator strength, major electronic transitions, ground and transient dipole moment of the dyes@TiO2S20Table S7-S8TDDFT results of the dyes@TiO2 from B3LYP and CAM-B3LYP/6-311G(d.p)S20-S21Table S9-S11TDDFT results of the dyes@TiO2 from B3LYP, CAM-B3LYP and M062X/3-21g(d) level of theoryS22-S24	Table S3	Bond length difference, hybridization, delocalization and stabilization energy	S17
Table S5Hybridization contribution of the atoms obtained from NBO analysisS19Table S6Energy Levels, computed excitation energies, oscillator strength, major electronic transitions, ground and transient dipole moment of the dyes@TiO2S20Table S7-S8TDDFT results of the dyes@TiO2 from B3LYP and CAM-B3LYP/6-311G(d,p)S20-S21Table S9-S11TDDFT results of the dyes@TiO2 from B3LYP, CAM-B3LYP and M062X/3-21g(d) level of theoryS22-S24	Table S4	C_{AO} population values of X_{β} - C_{α} - C_{b} - C_{v} in the ground and excited state	S18
Table S6Energy Levels, computed excitation energies, oscillator strength, major electronic transitions, ground and transient dipole moment of the dyes@TiO2S20Table S7-S8TDDFT results of the dyes@TiO2 from B3LYP and CAM-B3LYP/6-311G(d.p)S20-S21Table S9-S11TDDFT results of the dyes@TiO2 from B3LYP, CAM-B3LYP and M062X/3-21g(d) level of theoryS22-S24	Table S5	Hybridization contribution of the atoms obtained from NBO analysis	S19
Table S7-S8TDDFT results of the dyes@TiO2 from B3LYP and CAM-B3LYP/6-311G(d,p)S20-S21Table S9-S11TDDFT results of the dyes@TiO2 from B3LYP, CAM-B3LYP and M062X/3-21g(d)S22-S24level of theorylevel of theoryS22-S24	Table S6	Energy Levels, computed excitation energies, oscillator strength, major electronic transitions, ground and transient dipole moment of the dyes@ TiO_2	S20
Table S9-S11 TDDFT results of the dyes@TiO2 from B3LYP, CAM-B3LYP and M062X/3-21g(d) S22-S24 level of theory S22-S24	Table S7-S8	TDDFT results of the dyes@TiO ₂ from B3LYP and CAM-B3LYP/6-311G(d.p)	S20-S21
	Table S9-S11	TDDFT results of the dyes@TiO ₂ from B3LYP, CAM-B3LYP and M062X/3-21g(d) level of theory	S22-S24

Theoretical methods

The most influential parameters in determining the PCE (η) of DSSC are short-circuit current density (J_{sc}), open-circuit photo voltage (V_{oc}), and fill factor (FF). Among them J_{sc} and V_{oc} can be tuned by the appropriate substitution of π -building blocks. J_{sc} is directly proportional to the light harvesting efficiency (LHE) and electron injection efficiency (Φ_{inject}) of the dyes that can be calculated from the DFT computed parameters such as oscillator strength (f) and electron injection driving force (ΔG^{inject}) respectively. The short-circuit current density can be described in the integral form as

$$J_{sc} = e \int_{\lambda} LHE(\lambda) \Phi_{inj} \eta_{reg} \eta_{coll} I_s(\lambda) d\lambda$$
⁽¹⁾

Where, η_{reg} -electron regeneration efficiency and η_{coll} -electron collection efficiency. The light harvesting efficiency of the dyes could be obtained at their maximum absorption according to the formula:

$$LHE = 1 - 10^{-f}$$
(2)

Where, f-oscillator strength of the maximum absorption obtained at longer wavelength that depends on the overlap between initial and final state wave functions upon photoexcitation. To evaluate the electron injection efficiency, it is appropriate to calculate the closely related exciton binding energy (E_b) and driving force for electron injection (ΔG^{inject}). This value has been extracted from the excited state oxidation state potential state of the dyes@TiO₂. These both values can be calculated through the following expression:

$$\Delta G^{inject} = E^{dye*} - E_{CB} \tag{3}$$

$$E^{dye*} = E^{dye} - E_{0-0} \tag{4}$$

Where, E_{CB} - conduction band of the $(TiO_2)_{16}$ semiconductor and the value of -3.97 eV has been used in this study. E^{dye} - ground state oxidation potential; E_{0-0} - vertical excitation energy. The relative binding strength of the dyes upon TiO₂ adsorption is defined as:

$$E_{Ads} = E_{dye @TiO_2} - [E_{dye} + E_{TiO_2}]$$
(5)

Where, $E_{dye@TiO_2}$ – energy of the dye after adsorption on $(TiO_2)_{16}$; E_{dye} - energy of the isolated dye; E_{TiO_2} -energy of the bare $(TiO_2)_{16}$ cluster. The rate of electron injection from dye to TiO_2 semiconductor is measured based on the electronic coupling strength and energetic shift of LUMO (ads). For the purpose, Newns-Anderson model has been adopted to describe the change in molecular orbital levels of the dyes upon TiO₂ adsorption. The centre of LUMO(ads) distribution obtained from the portions (p_i) of the orbital located on the dyes is written as.

$$E_{LUMO}(ads) = \sum_{i} p_i \varepsilon_i \tag{6}$$

The LUMO broadening is obtained from the average deviation of the distribution of the positioned LUMO(ads) that can be evaluated using the relation:

$$\hbar\Gamma = \sum_{i} p_{i} \left| \varepsilon_{i} - E_{LUMO}(ads) \right|$$
⁽⁷⁾

Where, ε_{i-} orbital energies of the combined system in the selected energy range. Finally, for a better convenience, the electronic coupling strength obtained from LUMO broadening in the order of meV is converted into the direct estimation of electron-transfer time scale using the formula:

$$\tau(fs) = 658/\Gamma(meV) \tag{8}$$

Fig.S1 Energy levels of the bare acceptor units obtained from the B3LYP/6-311g(d,p) level of theory.

Fig. S2 Energy levels of the dyes obtained from the CAM-B3LYPand PBE1PBE/6-311g(d,p) level of theory.

Fig. S3 FMOs of HOMO-3, HOMO-2, LUMO+1 and LUMO+2 of the dyes, which are majorly involved in transitions and the red colour indicates the π -delocalization path.

Fig. S4 Charge transfer direction of the linear and cross-conjugated dyes.

S.No	Compound	E _{ox} (V) and HOMO (eV)	E _{red} (V) and LUMO (eV)	bandgap (eV)	Ref
1		1.00 V (-5.87 eV) (-5.25 eV)	-0.80 V (-4.33 eV) (-3.11 eV)	1.80 V (1.54 eV) (2.14 eV)	2
2		0.92 V (-5.79 eV) (-5.10 eV)	-0.83 V (-4.29 eV) (-3.18 eV)	1.75 V (1.50 eV) (1.92 eV)	2
3	S S S S S S S S S S S S S S S S S S S	1.04 V	-1.02 V	2.06 V	3
4	Oct Oct NC	0.97 V	-0.72 V	1.69 V	3
5	S- NC CN	1.44 V (-6.36 eV)	-0.96 V (-3.58 eV)	2.40 V (2.78 eV)	4
6		1.27 V (-6.25 eV)	-0.98 V (-3.60 eV)	2.25 V (2.66 eV)	4
7		1.22 V (-5.75 eV)	-1.06 V (-3.33 eV)	2.28 V (2.43 eV)	5
8		0.85 V (-5.48 eV)	-1.04 V (-3.39 eV)	1.89 V (2.10eV)	5

Fig. S5 Reported electrochemical oxidation, reduction potentials and band gap obtained from cyclic voltammetry technique and their HOMO and LUMO values. (Electrochemical band gap is indicated red in colour; DFT computed HOMO and LUMO values are indicated in blue colour).

Fig. S6 Schematic representation illustrating the extent of π -orbitals overlap needed to influence the energy levels and photophysical properties.

Fig. S7 Comparison of the TDDFT results for B2 and B2F obtained from the M062X/6-311g (d, p)/C-PCM(THF) level of theory.

Fig. S8 A series of the bridged dyes have been used to investigate the π -delocalization pathway.

Fig. S9 Excited state geometry of the dyes obtained from TD/B3LYP/6-311g (d, p) level of theory.

Fig. S10 Mulliken charge population analysis of the dyes in the ground (black) and excited state (red).

Fig. S11 Evaluation of the donor strength by comparing the energy levels with the previously reported donors.

Fig. S12 Relative percentage C_{AO} transformation of X_{β} - C_{α} - C_{b} - C_{v} from ground to excited state.

Fig. S13 Geometrical coordinates of the dyes

Fig. S14 Optimized geometries of B1, B2F dyes with significant geometrical parameters and TDDFT simulated spectra of the isolated dyes vs. dyes@(TiO₂)₁₆.

Fig. S15 DOS and PDOS of B2F and B1 dyes@(TiO₂)₁₆.

Fig.S16 Optimized geometries of the bridged dyes@TiO₂ with 'A' anchoring mode depicting selected bond distance and dihedral angles.

Fig. S17 Isodensity molecular orbital amplitudes of HOMO and LUMO of the bridged dyes@ TiO_2 with 'A' anchoring mode.

Fig. S18 HOMO-3, HOMO-2, HOMO-1 of the dyes@TiO₂ and the red colour indicates the π -delocalization path.

Fig. S19 Comparison of simulated absorption spectra of dyes and dyes@TiO₂ obtained from CAM-B3LYP/6-311g(d, p)/C-PCM(THF) level of theory.

Fig. S20 Comparison of simulated absorption spectra of dyes and dyes@TiO₂ obtained from B3LYP/6-311g(d, p)/C-PCM(THF) level of theory.

Fig. S21 Comparison of simulated absorption spectra of dyes@TiO₂ obtained from various functionals such as B3LYP, CAM-B3LYP and M062X/3-21g(d))/CPCM(THF) level of theory.

Fig. S22 Adsorption angle and the molecular coverage distance of the dyes@TiO₂.

Tables

Table S1: Computed S0- S1 excitation energies with electron volt in parenthesis, oscillator strength (f), major transitions and transient dipole moment of the dyes obtained from B3LYP/6-311g(d, p)/C-PCM(THF) level of theory.

BTD	λ _{max} (nm)	f	Major transitions	μ _e (D)
LT	848	0.42	HOMO->LUMO (99%)	19.55
	590	1.08	H-2->LUMO (96%)	_
LBT	1002	0.53	HOMO->LUMO (100%)	19.39
	658	0.79	H-2->LUMO (84%), HOMO->L+1 (14%)	
B2	1086	0.28	HOMO->LUMO (100%)	18.29
	730	0.55	H-2->LUMO (93%), H-3->LUMO (4%)	_
B3	555	1.03	HOMO->L+1 (96%), H-2->L+1 (2%)	12.29
	445	1.23	H-2->L+1 (89%), HOMO->L+1 (3%), HOMO->L+2 (3%)	
BB2	1125	0.4	HOMO->LUMO (100%)	12.37
	737	0.66	H-2->LUMO (63%), HOMO->L+1 (31%), H-3->LUMO (3%)	_
BB3	799	0.46	HOMO->L+1 (98%)	17.35
	587	0.61	H-2->L+1 (91%), H-3->L+1 (2%)	_

Table S2: Computed S0- S1 excitation energies with electron volt in parenthesis, oscillator strength (f), major transitions and transient dipole moment of the dyes obtained from CAM-B3LYP/6-311g(d, p)/C-PCM(THF) level of theory.

	$\lambda_{max}(nm)$	f	Major Transitions	μ _e (D)
LT	510 2.18 H-3->LUMO (13%), H-2->LUMO (46%), HOMO->LUMO (28%)		H-3->LUMO (13%), H-2->LUMO (46%), HOMO->LUMO (28%)	16.93
	357	0.52	H-2->L+1 (22%) HOMO->LUMO (25%) HOMO->L+1 (32%) HOMO->L+2 (10%)	-
LBT	557	1.76	H-2->LUMO (43%) HOMO->LUMO (38%), H-3->LUMO (9%)	16.18
	426	0.14	H-3->L+1 (13%), H-2->L+1 (38%), HOMO->L+1 (23%)	-
B2	591	0.76	H-4->LUMO (11%), H-3->LUMO (22%), H-2->LUMO (46%) HOMO->LUMO (14%)	15.56
	454	0.68	H-4->LUMO (20%), HOMO->LUMO (49%)	-
B3	575	0.05	H-4->LUMO (16%), H-3->LUMO (25%), H-2->LUMO (45%)	11.25
	417	1.81	H-2->L+1 (34%), HOMO->LUMO (20%), HOMO->L+1 (27%)	-
BB2	601	1.02	H-3->LUMO (18%), H-2->LUMO (46%), HOMO->LUMO (21%)	9.355
	491	0.54	H-4->LUMO (21%), H-3->LUMO (12%), H-2->L+1 (18%), HOMO->LUMO (23%), HOMO->L+1 (13%)	-
BB3	537	0.63	H-3->LUMO (19%), H-2->LUMO (42%), HOMO->LUMO (13%)	16.03
	499	0.90	H-2->L+1 (44%), HOMO->L+1 (27%)	-

Table S3. Bond length difference, hybridization, delocalization and stabilization energy of the dyes in the ground and excited state (in parenthesis) obtained from NBO analysis using B3LYP/6-311g(d, p) level of theory

Dve	$C_{a}-C_{b}^{a}$	$C_b = C_v^a$	SP Hybridizationa		Delocalization	E2 (kcal/mol) ^a (X _β - C _α - C _b)		
Dye	(Å)	(Å)	Χβ- Cα	C _a - C _b	(kcal/mol)	BD&CR	LP	Total
LT	1.421	1.368	3.48	1.72	4363.2	17.98	2.95	20.93
	(1.394)	(1.399)	(3.29)	(1.59)	(4375.1)	(15.54)	(3.03)	(18.63)
LBT	1.422	1.367	3.44	1.59	53598.6	18.04	3.02	21.06
	(1.399)	(1.387)	(3.22)	(1.52)	(53580.7)	(15.86)	(3.12)	(18.98)
B2	1.440	1.381	2.76	1.67	4854.8	14.07	4.3	18.37
	(1.441)	(1.422)	(2.79)	(1.64)	(4855.9)	(13.41)	(4.3)	(17.71)
B3	1.476 (1.475)	1.374 (1.428)	2.19 (2.27)	2.03 (2.01)	4829.5 (4827.4)	13.88 (13.53)	-	13.88 (13.53)
BB2	1.447	1.380	2.72	1.68	54243.0	14.17	4.5	18.67
	(1.431)	(1.414)	(2.77)	(1.61)	(54258.0)	(14.25)	(4.44)	(18.69)
BB3	1.474 (1.472)	1.365 (1.421)	2.21 (2.20)	2.04 (1.97)	54050.5 (54070.1)	17.98 (17.53)	-	17.98 (17.53)
B2F	1.431	1.384	2.99	1.59	4841.9	13.91	6.07	19.98
	(1.431)	(1.420)	(2.99)	(1.59)	(4843.8)	(13.17)	(6.15)	(19.32)
B1	1.486	1.363	2.23	2.23	4911.4	13.31	-	13.31

^avalues obtained from B3LYP/6-311G(d, p) level of theory. ^bstabilization energy obtained from second order theory analysis.

Table S4: C_{AO} of the valence orbitals of X_{β} - C_{α} - C_{b} - C_{v} involved and their population in the ground state and excited state (in parenthesis) respectively.

3(b) S 2(β) 4 (v) 1(α) NC		S 1 2 3 1 2 0 NC 4 COOH
Linear Series	B2 Series (X=S, O)	B3 Series (X=C)

		S	Px	Ру	Pz
	S (1)	0.75648 (0.75641)	-0.00645 (-0.00794)	0.09345 (0.25209)	0.26363 (0.08696)
LT	C (2)	0.44453 (0.44261)	0.19709 (0.21495)	0.23107 (0.48125)	0.44126 (0.25531)
	C (3)	0.34684 (0.36914)	0.09755 (0.08618)	0.24230 (0.30690)	0.31138 (0.22801)
	C (4)	0.33169 (0.33220)	0.23809 (0.21675)	0.19396 (0.42546)	0.42743 (0.22495)
LBT	S (1)	0.75256 (0.75145)	0.00256 (0.00637)	0.07421 (0.18753)	0.27070 (0.12804)
	C (2)	0.44644 (0.44235)	0.19352 (0.18143)	0.23112 (0.36945)	0.43992 (0.32177)
	C (3)	0.35033 (0.37285)	0.15141 (0.15297)	0.19035 (0.25389)	0.31199 (0.20619)
	C (4)	0.33230 (0.33342)	0.23446 (0.20200)	0.19739 (0.35291)	0.42709 (0.30709)
	S (1)	0.74187 (-0.01153)	-0.01503 (-0.01153)	0.15418 (0.24005)	0.17593 (0.09313)
R7	C (2)	0.41911 (0.42526)	0.14871 (0.15459)	0.31051 (0.43645)	0.36347 (0.23685)
02	C (3)	0.32562 (0.32101)	0.15042 (0.14891)	0.26582 (0.31276)	0.27446 (0.23924)
	C (4)	0.27315 (0.28030)	0.17130 (0.17211)	0.32054 (0.41046)	0.36214 (0.25244)
	S (5)	0.74825 (0.74766)	0.00856 (0.00840)	0.10197 (0.12681)	0.24581 (0.22110)
	C (1)	0.34869 (0.34488)	0.17880 (0.18580)	0.15322 (0.15763)	0.32045 (0.32045)
B3	C (2)	0.33392 (0.34195)	0.19179 (0.19487)	0.19048 (0.21636)	0.36714 (0.32899)
	C (3)	0.31093 (0.30069)	0.21953 (0.21136)	0.19118 (0.20355)	0.29853 (0.25821)
	C (4)	0.26161 (0.27943)	0.15134 (0.15943)	0.28518 (0.30490)	0.40727 (0.35385)
	S (1)	0.73405 (0.73397)	-0.00173 (-0.0080)	0.07107 (0.17589)	0.26205 (0.13711)
BB)	C (2)	0.41719 (0.41925)	0.11505 (0.12079)	0.24355 (0.36452)	0.44965 (0.32883)
DD2	C (3)	0.33545 (0.33348)	0.21506 (0.21423)	0.17745 (0.25141)	0.30485 (0.22463)
	C (4)	0.32793 (0.32553)	0.11498 (0.10584)	0.24749 (0.35060)	0.42109 (0.31829)
	S (5)	0.74143 (0.74473)	0.01665 (0.01975)	0.15443 (0.25833)	0.18645 (0.07825)
	C (1)	0.34602 (0.34675)	0.10458 (0.10706)	0.22744 (0.23625)	0.26848 (0.15222)
BB3	C (2)	0.33691 (0.34131)	0.20651 (0.19895)	0.26142(0.29661)	0.28112 (0.17318)
	C (3)	0.30260 (0.30026)	0.15765 (0.19283)	0.24071 (0.25234)	0.28452 (0.17605)
	C (4)	0.28453 (0.30489)	0.17056 (0.17471)	0.29225 (0.38994)	0.33380 (0.21631)
B2F	0 (1)	0.82359 (0.82738)	0.36415 (0.36533)	0.50011 (0.57881)	0.55080 (0.47861)
	C (2)	0.39801 (0.39914)	-0.00394 (-0.00404)	0.15158 (0.35682)	0.29714(0.08878)
	C (3)	0.29148 (0.28987)	0.20994 (0.21151)	0.19804 (0.31019)	0.26811 (0.15244)
	C (4)	0.24673 (0.25259)	0.14610 (0.13390)	0.31626 (0.42367)	0.39332 (0.27649)
B1	C (1)	0.33962 (0.36547)	0.14098 (0.12666)	0.25328 (0.25744)	0.28627 (0.27667)
	C (2)	0.32964 (0.32922)	0.16036 (0.15846)	0.25608 (0.24682)	0.33753(0.33709)
	C (3)	0.31407 (0.31193)	0.21293 (0.21412)	0.21175 (0.20931)	0.25963 (0.27168)
	C (4)	0.28747 (0.30904)	0.17460 (0.21532)	0.25765 (0.24756)	0.36175 (0.32047)

Table S5: Hybridization state of the atoms involving in resonance interactions from the contribution of the corresponding bonds $(X_{\beta}-C_{\alpha}-C_{b}-C_{v})$.

3(b) S 2(β) 4(v) 1(α) NC	1 X 2 3(b) NC 4 COOH	S 3 1 2 3 5 3 5 3 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 1 2 5 1 1 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1
Linear Series	B2 Series (X=S, O)	B3 Series (X=C)

	Bond	Atom	Ground state	Hybrid	Excited state	
LT	$S_{\beta}-C_{\alpha}$	S _β	s(19.11%), p (80.34%)	sp ^{4.20}	s (18.48%), p (81.38%)	sp ^{4.38}
	F	C _α	s (22.29%), p (77.52%)	sp ^{3.48}	s (23.26%), p (46.56%)	sp ^{3.29}
	C _a -C _b	Ca	s (36.81%), p (63.15%)	sp ^{1.72}	s (37.60%), p (62.36%)	sp ^{1.59}
		C _b	s (38.61%), p (61.35%)	sp ^{1.59}	s (39.62%), p (60.34%)	sp 1.52
	C _b -C _v	C _b	s (37.63%), p (62.34%)	sp ^{1.66}	s (36.60%), p (63.36%)	sp ^{1.73}
		C _v	s (38.33%), p (61.64%)	sp 1.61	s (37.15%), p (62.82%)	sp ^{1.69}
LBT	$S_{\beta}-C_{\alpha}$	S _β	s (19.32%), p (80.13%)	sp 4.15	s (18.82%), p (80.65%)	sp ^{4.29}
		C _α	s (22.45%), p (77.35%)	sp ^{3.44}	s (23.67%), p (76.15%)	sp ^{3.22}
	C _a -C _b	C _α	s (38.61%), p (61.35%)	sp ^{1.59}	s (39.62%), p (60.34%)	sp ^{1.52}
		C _b	s (38.37%), p (61.59%)	sp 1.61	s (39.12%), p (60.84%)	sp ^{1.56}
	C _b -C _v	C _b	s (37.62%), p (62.34%)	sp 1.66	s (36.97%), p (62.99%)	sp 1.70
		Cv	s (38.41%), p (61.56%)	sp ^{1.60}	s (37.67%), p (62.30%)	sp ^{1.65}
B2	$S_{\beta}-C_{\alpha}$	S _β	s (19.57%), p (79.87%)	sp 4.08	s (21.32%), p (78.64%)	sp ^{3.67}
	,	Ca	s (26.56%), p (73.28%)	sp ^{2.76}	s (26.34%), p (73.50%)	sp ^{2.79}
	C _a -C _b	Ca	s(37.48%), p (62.48%)	sp ^{1.67}	s (37.93%), p (62.03%)	sp ^{1.64}
		C _b	s (30.63%), p (69.32%)	sp 2.26	s (30.78%), p (69.18%)	sp ^{2.25}
	C _b -C _v	C _b	s (37.27%), p (62.69%)	sp 1.68	s (36.11%), p (63.86%)	sp 1.77
		C _v	s (39.43%), p (60.52%)	sp 1.53	s (37.92%), p (62.06%)	sp 1.64
B3	$C_{\beta}-C_{\alpha}$	C _β	s (35.89%), p (64.07%)	sp ^{1.79}	s(35.23%), p (64.73%)	sp ^{1.84}
	P	Ca	s (31.30%), p (68.66%)	sp ^{2.19}	s (30.53%), p (69.43%)	sp ^{2.27}
	C _a -C _b	Ca	s(33.03%), p (66.93%)	sp ^{2.03}	s (34.16%), p (65.80%)	sp ^{2.01}
		C _b	s (30.28%), p (69.67%)	sp ^{2.30}	s (30.82%), p (69.13%)	sp ^{2.26}
	C _b -C _v	C _b	s (37.35%), p (62.61%)	sp 1.68	s (35.73%), p (64.24%)	sp 1.80
		C _v	s (40.10%), p (59.87%)	sp 1.49	s (37.75%), p (62.22%)	sp 1.65
BB2	$S_{\beta}-C_{\alpha}$	S _β	s (21.68%), p (78.28%)	sp ^{3.61}	s (21.55%), p (78.05%)	sp ^{3.63}
		C _α	s (26.87%), p (72.98%)	sp ^{2.72}	s (26.48%), p (73.36%)	sp ^{2.77}
	C _a -C _b	Ca	s(37.26%), p (62.71%)	sp ^{1.68}	s (38.26%), p (61.70%)	sp ^{1.61}
		C _b	s (30.60%), p (69.35%)	sp ^{2.27}	s (31.49%), p (68.47%)	sp ^{2.17}
	C _b -C _v	C _b	s (37.35%), p (62.62%)	sp ^{1.68}	s (36.35%), p (63.61%)	sp ^{1.75}
		C _v	s (39.04%), p (60.93%)	sp ^{1.56}	s (37.83%), p (62.15%)	sp ^{1.64}
BB3	$C_{\beta} - C_{\alpha}$	C _β	s(35.82%), p (64.13%)	sp ^{1.79}	s (35.44%), p (64.52%)	sp ^{1.82}
	P	Ca	s (31.11%), p (68.85%)	sp ^{2.21}	s (33.56%), p (66.40%)	sp ^{2.20}
	C _a -C _b	Ca	s(32.93%), p (67.03%)	sp ^{2.04}	s (34.04%), p (65.92%)	sp ^{2.01}
		C _b	s (31.39%), p (68.57%)	sp ^{2.18}	s (31.70%), p (68.25%)	Sp ^{2.15}
	C _b -C _v	C _b	s (37.40%), p (62.57%)	sp ^{1.67}	s (35.81%), p (64.16%)	sp ^{1.79}
		Cv	s (40.24%), p (59.73%)	sp ^{1.48}	s (37.45%), p (62.52%)	sp ^{1.67}
B2F	$O_{\beta} - C_{\alpha}$	Οβ	s (32.5%), p (67.32%)	sp ^{2.07}	s (32.66%), p (67.27%)	sp 2.06
		Ca	s (25.03%), p (74.33%)	sp ^{2.99}	s (25.02%), p (74.75%)	sp ^{2.99}
	C _a -C _b	Ca	s(38.55%), p (61.42%)	sp ^{1.59}	s (38.63%), p (61.34%)	sp ^{1.59}
		C _b	s (29.83%), p (70.11%)	sp ^{2.35}	s (29.64%), p (70.30%)	sp ^{2.37}
	C _b -C _v	C _b	s (38.09%), p (61.87%)	sp 1.62	s (36.95%), p (63.03%)	sp 1.71
		Cv	s (39.07%), p (60.90%)	sp 1.56	s (37.64%), p (62.33%)	sp 1.66
B1	$C_{\beta}-C_{\alpha}$	C _β	s (35.93%), p (64.03%)	sp ^{2.18}	s (35.27%), p (64.68%)	sp ^{1.83}
		C _α	s (36.89%), p (63.08%)	sp ^{2.23}	s (36.11%), p (63.86%)	sp ^{2.27}
	C _a -C _b	Ca	s(30.90%), p (69.06%)	sp ^{2.23}	s (32.23%), p (67.73%)	sp ^{2.10}
		C _b	s (31.42%), p (68.54%)	sp ^{2.18}	s (32.01%), p (67.95%)	sp ^{2.12}
	C _b -C _v	C _b	s (37.28%), p (62.69%)	sp 1.68	s (35.71%), p (64.26%)	sp 1.80
		C _v	s (40.90%), p (59.47%)	sp 1.47	s (37.67%), p (62.30%)	sp 1.65

 $(X_{\beta}:$ Heteroatoms at β - substitution; $C_{\alpha}:$ carbon; $C_{b}:$ bridging carbon; $C_{v}:$ vinylenic carbon).

Table S6. Energy Levels, computed excitation energies, oscillator strength, major electronic transitions, groundand transient dipole moment of the dyes@ TiO_2

	HOMO ^a (eV)	LUMO ^a (eV)	HL Gap ^a (eV)	λ _{max} ^b (nm)	f	Major compositions	μ _g (Debye)	μ _e (Debye)
LT-T	-4.71	-3.92	0.79	525.9 (2.36)	2.40	H->L (84%), H-2->L (9%), H-2->L+1 (7%)	18.9	21.0
LBT-T	-4.74	-3.94	0.80	577.1 (2.15)	1.84	H->L (89%), H-2->L (7%), H-3->L (4%)	20.9	23.8
B2S-T	-4.64	-3.99	0.65	603.1 (2.06)	0.96	H->L (59%), H-3->L (16%), H-2->L (21%), H-4->L (3%)	16	18.2
B2A-T	-4.62	-3.95	0.67	578.9 (2.14)	0.82	H->L (61%), H-3->L (17%), H-2->L (19%), H-4->L (3%)	12.6	14.8
B3S-T	-4.63	-3.92	0.71	493.1 (2.51)	0.17	H-3->L+2 (11%), H-2->L+2 (29%), H-2->L+3 (17%), H-4->L+2 (5%), H-4->L+3 (3%), H-3->L+1 (2%), H-3->L+3 (7%), H-2->L+1 (5%), H->L+2 (8%), H->L+3 (4%)	15.0	16.4
B3A-T	-4.73	-3.79	0.94	488.0 (2.54)	0.09	H->L (10%), H-3->L+1 (13%), H-2->L (11%), H-2->L+1 (25%), H- 4->L+1 (5%), H-3->L (2%), H-2->L+4 (2%), H-2->L+9 (2%), H- >L+1 (8%), H->L+9 (2%)	19.7	23.2
BB2S-T	-4.72	-3.81	0.91	617.3 (2.01)	1.36	H->L (67%), H-2->L (22%), H-3->L (9%)	18.6	19.9
BB2A-T	-4.64	-3.96	0.68	605.5 (2.07)	1.02	H->L (62%), H-3->L (13%), H-2->L (15%)	10.7	12.5
BB3S-T	-4.67	-3.71	0.96	540.9 (2.29)	0.32	H->L (45%), H-3->L (15%), H-2->L (17%), H-4->L (6%), H-2- >L+2 (7%)	19.6	21.2
BB3A-T	-4.61	-3.73	0.88	538.7 (2.30)	0.26	H->L (43%), H-3->L (18%), H-2->L (21%), H-4->L (8%), H-2- >L+2 (9%)	16.4	18.9
B2F-T	-4.64	-3.98	0.66	609.2 (2.04)	0.90	HOMO->LUMO (53%), H-3->LUMO (15%), H-2->LUMO (18%), H-4->LUMO (6%)	16.3	19.1
B1-T	-4.54	-4.13	0.41	457.8 (2.71)	0.40	H-3->L+2 (10%), H-2->L+2 (27%), HOMO->L+2 (16%),H-4->L+1 (2%), H-4->L+2 (6%), H-3->L+1 (4%), H-2->L+1 (9%), H-2->L+4 (3%), HOMO->L+1 (6%)	11.9	13.7

^avalues obtained from B3LYP/6-311g(d,p). ^bvalues obtained from M06-2X/6-311g(d,p)/C-PCM(THF) and electron volt values are given in

parenthesis. c ground state (μ_{g}) and excited state (μ_{g}) dipole moments computed from B3LYP/6-311g(d, p) level of theory.

Table S7: Computed S0- S1 excitation energies with electron volt in parenthesis, oscillator strength (f), major transitions and transient dipole moment of the dyes@TiO₂ obtained from B3LYP/6-311g(d, p)/C-PCM(THF) level of theory.

BTD	λ_{max} (nm)	f	Major transitions	μ _e (D)
LT-T	822.3 (1.51)	0.43	HOMO->L+2 (16%), HOMO->L+3 (81%)	21.0
	808.3 (1.53)	0.03	HOMO->L+2 (84%), HOMO->L+3 (16%)	
	966.6 (1.28)	0.58	HOMO->LUMO (99%)	
LB1-1	659.9 (1.88)	0.29	H-2->LUMO (22%), HOMO->L+11 (60%), HOMO->L+13 (11%)	- 23.8
B2S-T	986.1 (1.26)	0.29	HOMO->LUMO (99%)	10.2
	699.1 (1.77)	0.66	H-2->LUMO (90%), H-3->LUMO (5%)	- 18.2
B2A-T	996.8 (1.24)	0.27	HOMO->LUMO (99%)	14.0
	707.2 (1.75)	0.48	H-2->LUMO (90%), H-3->LUMO (5%)	14.8
D2C T	814.1 (1.52)	0.01	HOMO->L+3 (67%), HOMO->L+4 (13%), HOMO->L+5 (13%)	10.4
B32-1	803.2 (1.54)	0.01	HOMO->L+3 (31%), HOMO->L+4 (37%), HOMO->L+5 (23%)	- 10.4
D24 T	980.3 (1.27)	0.02	HOMO->LUMO (97%)	22.2
B3A-1	704.7 (1.76)	0.06	H-2->LUMO (13%), H-1->LUMO (34%), HOMO->L+10 (43%)	- 23.2
	1009.8 (1.28)	0.47	HOMO->LUMO (99%)	10.0
DD23-1	707.2 (1.75)	0.27	H-2->LUMO (10%), HOMO->L+11 (77%)	19.9

BB2A-T	1074.7 (1.15)	0.39	HOMO->LUMO (99%)	— 12.5
	730.0 (1.70)	0.46	H-2->LUMO (52%), HOMO->L+9 (16%), HOMO->L+11 (21%)	
BB3S-T	815.1 (1.52)	0.27	HOMO->L+4 (61%), HOMO->L+6 (26%)	21.2
	790.6 (1.57)	0.18	HOMO->L+4 (34%), HOMO->L+6 (54%)	
BB3A-T	783.9 (1.58)	0.30	HOMO->L+6 (36%), HOMO->L+8 (41%)	— 18.9
	756.9 (1.64)	0.03	HOMO->L+6 (52%), HOMO->L+7 (24%), HOMO->L+8 (21%)	

Table S8: Computed S0- S1 excitation energies with electron volt in parenthesis, oscillator strength (f), major transitions and transient dipole moment of the dyes@TiO₂ obtained from CAM-B3LYP/6-311g (d, p)/C-PCM(THF) level of theory.

СТД	λ_{max} (nm)	f	Major transitions	μ _e (D)
LT-T	514.9 (2.41)	2.56	HOMO->LUMO (68%), H-3->LUMO (13%), H-2->LUMO (9%), H-2->L+1 (5%), HOMO->L+1 (5%)	_ 18.7
	355.2(3.49)	0.39	HOMO->LUMO (20%), H-2->L+25 (12%), HOMO->L+1 (19%), HOMO->L+25 (15%)	
LBT-T	568.1 (2.18)	1.94	HOMO->LUMO (78%), H-2->LUMO (13%), H-3->LUMO (7%), HOMO->L+1 (2%)	- 21.0
	330.8 (2.95)	1.18	HOMO->L+44 (77%) H-1->L+51 (6%)	
DOC T	594.0 (2.09)	0.96	HOMO->LUMO (52%), H-3->LUMO (29%), H-2->LUMO (11%),	16.2
B23-1	432.0 (2.87)	0.97	HOMO->LUMO (38%), H-4->LUMO (18%), HOMO->L+22 (10%)	10.2
	572.2(2.17)	0.80	HOMO->LUMO (54%), H-3->LUMO (21%), H-2->LUMO (25%),	- 12.9
DZA-I	438.1(2.83)	0.91	HOMO->LUMO (38%), H-4->LUMO (19%), H->L+3 (33%)	
DOC T	490.4 (2.53)	0.20	H-3->L+3 (15%), H-2->L+2 (13%), H-2->L+3 (34%), H-4->L+3 (8%), H-3->L+2 (6%), HOMO->L+3 (6%)	- 16.4
B32-1	414.8 (2.99)	2.30	H-2->L+19 (31%), HOMO->L+19 (24%), H-2->L+17 (4%), H-2->L+18 (4%), H-2->L+20 (4%), HOMO->L+20 (4%), HOMO->L+39 (5%)	
	485.6 (2.55)	0.13	HOMO->LUMO (5%), H-3->L+2 (17%), H-2->L+2 (29%), H-4->L+2 (7%), H-2->LUMO (9%), HOMO->L+2 (7%)	- 22.1
D3A-1	458.0 (2.71)	0.67	HOMO->LUMO (10%), H-4->L+2 (5%), H-3->L+2 (7%), H-2->LUMO (7%), H-2->L+2 (7%), H-2->L+4 (5%), H-2->L+5 (6%), H-2->L+9 (5%), H-2->L+15 (4%), HOMO->L+5 (5%)	
BB2S-T	606.9 (2.04)	1.39	HOMO->LUMO (66%), H-3->LUMO (13%), H-2->LUMO (18%),	- 17.4
	466.1(2.66)	0.35	HOMO->LUMO (14%), H-4->LUMO (19%), H-3->LUMO (16%), H-2->L+7 (11%)	
BB2A-T	598.1(2.07)	1.01	HOMO->LUMO (62%), H-3->LUMO (16%), H-2->LUMO (19%)	10.2
	484.9 (2.56)	0.55	HOMO->LUMO (18%), H-4->LUMO (20%), H-3->LUMO (13%), H-2->L+7 (10%)	10.5
BB3S-T	536.2(2.31)	0.41	HOMO->LUMO (69%), H-3->LUMO (15%), H-2->LUMO (3%), H-2->L+1 (12%)	- 20.0
	504.1 (2.46)	1.02	H-2->L+3 (20%), HOMO->L+3 (11%), H-4->LUMO (5%), H-3->LUMO (6%), H-2->LUMO (5%), H- 2->L+1 (7%), H-2->L+4 (9%), H-2->L+5 (5%), HOMO->L+1 (6%)	
	533.0 (2.33)	0.29	HOMO->LUMO (68%), H-3->LUMO (16%), H-2->LUMO (8%), H-4->LUMO (8%)	17.0
ввза-і	497.5 (2.49)	1.19	H-2->L+4 (35%), HOMO->L+4 (19%), H-4->LUMO (4%), H-3->L+4 (3%), H-2->L+5 (9%)	- 17.9

Table S9: Computed S0- S1 excitation energies with electron volt in parenthesis, oscillator strength (f), major transitions and transient dipole moment of the dyes@TiO₂ obtained from B3LYP/3-21g(d)/C-PCM(THF) level of theory.

BTD	λ _{max} (nm)	f	Major transitions	μ _e (D)
LT	782.4 (1.58)	0.44	HOMO->LUMO (99%	20.4
	563.3 (2.17)	1.27	H-2->LUMO (95%)	
	929.6 (1.33)	0.52	HOMO->LUMO (99%)	- 22.9
LDT	626.2 (1.98)	0.94	H-2->LUMO (90%), HOMO->L+5 (5%)	
DOC T	961.3 (1.29)	0.24	HOMO->LUMO (99%)	— 18.2
B23-1	664.2 (1.87)	0.69	H-2->LUMO (92%), H-3->LUMO (5%)	
BJV T	963.6 (1.29)	0.23	HOMO->LUMO (99%	— 13.9
DZA-1	672.2 (1.84)	0.54	H-2->LUMO (93%), H-3->LUMO (5%)	
рэс т	817.9 (1.52)	0.03	HOMO->LUMO (98%)	- 16.8
D33-1	629.4 (1.97)	0.05	H-3->LUMO (11%), H-2->LUMO (84%), HOMO->LUMO (2%)	
	797.4 (1.55)	0.06	HOMO->LUMO (98%)	— 22.7
DSA-1	639.4 (1.94)	0.15	HOMO->L+4 (93%), HOMO->L+5 (3%)	
DDDC T	1013. (1.22)	0.39	HOMO->LUMO (99%)	— 19.9
DD23-1	687.7 (1.80)	0.40	H-2->LUMO (16%), HOMO->L+1 (13%), HOMO->L+2 (66%)	
BBJA T	1042.4 (1.19)	0.36	HOMO->LUMO (99%)	— 12.0
BBZA-I	699.0 (1.77)	0.66	H-2->LUMO (72%), HOMO->L+1 (12%), HOMO->L+2 (9%)	
BB3S-T	992.4 (1.25)	0.03	HOMO->LUMO (99%)	- 21.0
	783.3 (1.58)	0.43	HOMO->L+1 (99%)	
BB3A-T	1010.7 (1.23)	0.02	HOMO->LUMO (99%)	— 19.0
	775.0 (1.59)	0.41	HOMO->L+1 (98%)	

Table S10: Computed S0- S1 excitation energies with electron volt in parenthesis, oscillator strength (f), major transitions and transient dipole moment of the dyes@TiO₂ obtained from CAM-B3LYP/3-21g(d)/C-PCM(THF) level of theory.

СТД	λ_{max} (nm)	f	Major transitions	μ _e (D)
LT	462.8 (2.68)	2.60	H-3->LUMO (8%), H-2->LUMO (15%), HOMO->LUMO (76%)	18.3
	339.8 (3.65)	0.47	H-2->L+16 (11%), HOMO->LUMO (26%), HOMO->L+16 (15%)	
LBT	521.0 (2.38)	1.99	H-3->LUMO (2%), H-2->LUMO (18%), HOMO->LUMO (78%)	- 20.4
	334.3 (3.71)	0.75	H-3->LUMO (12%), H-2->L+26 (13%), HOMO->L+26 (30%),	
B2S-T	523.7 (2.37)	1.01	H-3->LUMO (13%), H-2->LUMO (15%), HOMO->LUMO (62%), H-4->LUMO (9%)	16.1

	378.0 (3.28)	1.10	H-5->LUMO (10%), H-4->LUMO (10%), H-2->LUMO (11%), HOMO->LUMO (34%)	
B2A-T	534.6 (2.32)	0.83	H-3->LUMO (14%), H-2->LUMO (16%), HOMO->LUMO (63%), H-4->LUMO (7%)	12.1
	420.9 (2.95)	0.66	H-4->LUMO (17%), HOMO->LUMO (49%), H-5->LUMO (6%), H-3->LUMO (9%)	
DOC T	469.7 (2.64)	0.25	H-4->LUMO (12%), H-3->LUMO (27%), H-2->LUMO (46%), HOMO->LUMO (9%)	- 15.9
B3S-T	393.9 (3.15)	2.25	H-2->L+11 (30%), HOMO->L+11 (25%) HOMO->LUMO (3%), HOMO->L+12 (8%), HOMO->L+32 (6%)	
	458.9 (2.70)	0.71	H-3->LUMO (27%), H-2->LUMO (38%), HOMO->LUMO (11%), H-4->LUMO (9%)	21.6
ВЗА-Т	422.9 (2.93)	1.14	H-2->L+1 (18%), HOMO->L+1 (14%), H-4->LUMO (7%), H-3->LUMO (7%), H-3->L+1 (3%), H-2- >L+2 (5%), H-2->L+3 (9%), H-2->L+6 (2%), H-2->L+7 (3%), HOMO->L+2 (4%), HOMO->L+3 (7%), HOMO->L+7 (2%)	
DDOC T	539.2 (2.29)	1.42	H-3->LUMO (9%), H-2->LUMO (34%), HOMO->LUMO (57%)	17.4
BB23-1	445.9 (2.78)	0.30	H-4->LUMO (20%), H-3->LUMO (17%), H-2->L+1 (13%), HOMO->LUMO (22%), HOMO->L+1 (11%)	
	562.4 (2.20)	1.01	H-3->LUMO (16%), H-2->LUMO (31), HOMO->LUMO (52%)	10.0
BBZA-I	484.9 (2.69)	0.55	H-4->LUMO (20%), H-3->LUMO (13%), H-2->L+7 (10%), HOMO->LUMO (18%)	
BB3S-T	513.2 (2.42)	0.56	H-3->LUMO (22%), H-2->LUMO (42%), HOMO->LUMO (32%), H-4->LUMO (6%)	19.8
	475.5 (2.60)	1.14	H-2->L+1 (45%), HOMO->L+1 (27%), H-4->LUMO (6%), H-3->L+1 (7%)	
BB3A-T	510.9 (2.43)	0.42	H-4->LUMO (5%), H-3->LUMO (12%), H-2->LUMO (43%), HOMO->LUMO (40%)	18.0
	470.8 (2.63)	1.21	H-2->L+1 (47%), HOMO->L+1 (28%), H-4->LUMO (5%), H-3->L+1 (6%)	- 10.0

Table S11: Computed S0- S1 excitation energies with electron volt in parenthesis, oscillator strength (f), major transitions and transient dipole moment of the dyes@TiO₂ obtained from M062X/3-21g(d)/C-PCM(THF) level of theory.

MTD	λ _{max} (nm)	f	Major transitions	μ _e (D)
LT	468.1 (2.65)	2.38	H-3->LUMO (10%), H-2->LUMO (12%), HOMO->LUMO (77%)	- 18.5
	315.6 (3.21)	1.25	HOMO->L+32 (80%), H-1->L+34 (4%), H-1->L+50 (3%)	
LBT	528.4 (2.35)	1.82	H-2->LUMO (13%), HOMO->LUMO (81%), H-3->LUMO (6%)	20.6
	424.9 (2.92)	0.33	H-3->LUMO (20%), H-2->LUMO (34%), HOMO->LUMO (42%)	- 20.6
B2S-T	530.7 (2.33)	0.99	H-3->LUMO (8%), H-2->LUMO (29%), HOMO->LUMO (60%), H-4->LUMO (3%)	- 16.3
	387.3 (2.82)	1.46	H-5->LUMO (10%), H-4->LUMO (20%), H-2->LUMO (14%), H-2->L+6 (12%), HOMO->LUMO (10%), H-6->LUMO (2%), H-2->L+5 (6%), HOMO->L+5 (5%), HOMO->L+6 (9%)	
B2A-T	542.5 (2.29)	0.84	H-3->LUMO (16%), H-2->LUMO (28%), HOMO->LUMO (55%)	- 12.2
	390.8 (2.79)	1.28	H-5->LUMO (13%), H-4->LUMO (20%), H-2->LUMO (16%), H-2->L+6 (12%), HOMO->LUMO (11%)	
B3S-T	471.4(2.63)	0.22	H-3->LUMO (23%), H-2->LUMO (49%), HOMO->LUMO (14%), H-4->LUMO (9%)	- 16.2
	396.3 (3.13)	1.69	H-2->L+3 (26%), HOMO->LUMO (20%), HOMO->L+3 (31%)	
ВЗА-Т	488.0 (2.54)	0.63	H-3->LUMO (23%), H-2->LUMO (40%), HOMO->LUMO (17%)	— 22.1
	424.2 (2.66)	1.20	H-2->L+1 (32%), HOMO->L+1 (36%), H-4->LUMO (6%), H-3->LUMO (7%)	

BB2S-T	546.5 (2.27)	1.35	H-3->LUMO (10%), H-2->LUMO (29%), HOMO->LUMO (61%)	17.8
	327.1(2.71)	1.02	H-2->L+19 (14%), HOMO->L+19 (55%)	
BB2A-T	570.5(2.17)	1.06	H-3->LUMO (13%), H-2->LUMO (23%), HOMO->LUMO (64%)	10.1
	474.2(2.61)	0.20	H-4->LUMO (13%), H-3->LUMO (19%), HOMO->LUMO (41%), H-2->LUMO (9%)	- 10.1
BB3S-T	516.9(2.39)	0.45	H-3->LUMO (19%), H-2->LUMO (13%), HOMO->LUMO (58%), H-4->LUMO (8%)	10.0
	479.3(2.59)	1.18	H-2->L+1 (40%), HOMO->L+1 (38%), H-4->LUMO (5%), H-3->LUMO (5%)	19.9
BB3A-T	515.2(2.41)	0.32	H-3->LUMO (19%), H-2->LUMO (15%), HOMO->LUMO (57%), H-4->LUMO (9%)	
	473.6 (2.62)	1.26	H-2->L+1 (42%), HOMO->L+1 (39%), H-4->LUMO (4%), H-3->L+1 (4%)	18.1

References

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2010**.

2. A. Leliège, J. Grolleau, M. Allain, P. Blanchard, D. Demeter, T. Rousseau and J. Roncali, *Chem. Eur. J.*, 2013, **19**, 9948-9960.

3. D. Demeter, F. Melchiorre, P. Biagini, R. Po and J. Roncali, *Tetrahedron Lett.*, 2016, 57, 505-508.

4. Z. Wang, A. Putta, J. D. Mottishaw, Q. Wei, H. Wang and H. Sun, *J. Phys. Chem. C*, 2013, **117**, 16759-16768.

 J. Shi, W. Zhao, L. Xu, Y. Kan, C. Li, J. Song and H. Wang, J. Phys. Chem. C, 2014, 118, 7844-7855.