Investigating the Influence of Charge Transport on the Performance of PTB7:PC₇₁BM based Organic Solar Cell

Mihirsinh Chauhan^{1,a}, Abhishek Sharma^{2,3,a}, Jessica Patel⁴, M. Aatif ^{2,3}, Suresh Chand^{2,3}, Manoj Kumar Pandey⁴, Manoj Kumar⁴, J.P. Tiwari^{2,3,*}, Brijesh Tripathi^{4,*}

¹Department of Solar Energy, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar – 382007 (India).

²Advanced Materials and Devices Division (FOED Group), CSIR-National Physical Laboratory New Delhi 110012 (India).

³Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi 110012 (India)

⁴Department of Science, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar – 382007 (India).

^aAuthors contributed equally

*Corresponding Authors: Ph. +91 79 2327 5455, +91-11-45608640, Fax +91 79 2327 5030, +91-11-

45609310,

Email: brijesh.tripathi@sse.pdpu.ac.in, jai_ti2002@yahoo.com, tiwarijp@mail.nplindia.org

Figure S1: Ideality Factor: The ideality factor n is determined from the slope of the open circuit voltage (V_{OC}) versus ln (IPL) graph as

Figure S2: Shockley model; fit (solid lines) of the experimental data from Fig. 2a (symbols) by an Shockley diode model (For the comparison with charge transport model fitting plotted as in Fig 2a)

Table S1: Comparison between derived performance parameters by Shockley model and Charge transport model with experimental data at IPL 100 mWcm⁻²

	J _{SC} (mAcm ⁻²)	V _{OC} (V)	FF (%)	PCE (%)
Experimental	12.52	0.725	56.7	5.14
Shockley Model	12.27	0.72	64.7	5.72
Charge Transport Model	12.61	0.728	56.4	5.18

Figure S3: Plot of internal voltage versus external voltage calculated using Eq. (S4) this plot explains the variation of conductivity plotted in Figure 3b.

Figure S4: Behavior of α with mobility variation for different induced recombination factors

Figure S6. Plot of k_r versus mobility variation for different induced recombination factors

Note 1:

The transport limited photovoltaic response can be described in terms of the quasi - Fermi level splitting by replacing external voltage with internal voltage ($V_{internal}$) through [1],

$$V_{\text{internal}} = V - \left(\frac{LJ}{\sigma}\right) \tag{S1}$$

The electrical conductivity σ depends on the position of quasi-Fermi level which is defined by [1],

$$\sigma = 2q\mu_{eff}N_i \exp\left(\frac{qV_{\text{internal}}}{2k_BT}\right)$$
(S2)

Therefore, a closed form expression of the J-V curve under transport limited condition can be derived using well known relations, $V_{OC} = \frac{k_B T}{q} \ln \left(\frac{J_G + J_o}{J_o} \right)$ with the assumption $J_0 << J_G$ [2],

$$J = J_G \left\{ \exp\left[\frac{q}{k_B T} \left(V_{\text{internal}} - V_{OC}\right)\right] - 1 \right\}$$
(S3)

So, we can rewrite the Eq. (S1) as,

$$V = V_{internal} + \left(\frac{LJ_G}{\sigma} \left\{ \exp\left[\frac{q}{k_B T} (V_{internal} - V_{OC})\right] - 1 \right\} \right)$$

$$= V_{internal} + \left(\frac{LJ_G}{2q\mu_{eff}N_i} \exp\left(-\frac{qV_{internal}}{2k_B T}\right) \left\{ \exp\left(\frac{qV_{internal}}{k_B T}\right) \exp\left(-\frac{qV_{OC}}{k_B T}\right) - 1 \right\} \right)$$

$$= V_{internal} + \left(\frac{LJ_G}{2q\mu_{eff}N_i} \exp\left(\frac{qV_{internal}}{2k_B T}\right) \exp\left(-\frac{qV_{OC}}{k_B T}\right) - \exp\left(-\frac{qV_{internal}}{2k_B T}\right) \right\} \right)$$

$$= V_{internal} + \left(\frac{LJ_G}{2q\mu_{eff}N_i} \exp\left(-\frac{qV_{OC}}{2k_B T}\right) \left\{ \exp\left(\frac{qV_{internal}}{2k_B T}\right) \exp\left(-\frac{qV_{OC}}{2k_B T}\right) - \exp\left(-\frac{qV_{internal}}{2k_B T}\right) \exp\left(\frac{qV_{OC}}{2k_B T}\right) \right\} \right\}$$

$$= V_{internal} + \left\{ \frac{LJ_G}{2q\mu_{eff}N_i} \exp\left(-\frac{qV_{OC}}{2k_B T}\right) 2 \sinh\left(\frac{q}{2k_B T} (V_{internal} - V_{OC})\right) \right\}$$

$$= V_{internal} + \left\{ \frac{LJ_G}{2q\mu_{eff}N_i} \exp\left(-\frac{qV_{OC}}{2k_B T}\right) 2 \sinh\left(\frac{q}{2k_B T} (V_{internal} - V_{OC})\right) \right\}$$

$$= V_{internal} + \left\{ \frac{LJ_G}{2q\mu_{eff}N_i} \exp\left(-\frac{qV_{OC}}{2k_B T}\right) \frac{q}{k_B T} (V_{internal} - V_{OC}) \right\} \quad (\text{Using the simplification sinh}(x) \to x)$$

$$=V_{\text{internal}} + \alpha \left(V_{\text{internal}} - V_{OC} \right)$$
(S4)

where,

$$\alpha = \frac{J_G L}{2k_B T \mu_{eff} N_i} \exp\left(\frac{-qV_{OC}}{2k_B T}\right)$$
(S5)

Inserting the value from Eq. (S4) into Eq. (2) leading finally [2],

$$J = J_G \left\{ \exp\left(\frac{q\left(V - V_{OC}\right)}{\left(1 + \alpha\right)k_B T}\right) - 1 \right\}$$
(S6)

As we know that at open circuit condition $V = V_{int} = V_{OC}$. Using this condition, Equation 2 leads to well- known expression $V_{OC} = \frac{k_B T}{q} \ln \left(\frac{J_G}{J_0} \right)$. This is reasonable because at open circuit the

current density is zero and transport issues are irrelevant.

Finally, putting the value of $\exp\left(-\frac{qV_{OC}}{k_BT}\right) = \frac{J_0}{J_G}$, where $J_0 = qdk_L N_i^2$, α can be rewritten as,

$$\alpha = \frac{qL^2 \sqrt{k_L G}}{2\mu_{eff} k_B T} \tag{S7}$$

This equation relates α to the charge carrier concentration, recombination coefficient, layer thickness and mobility. If we take G to be proportional to IPL and assume all remaining parameter as a constant, Eq. (S7) can be derived as function of IPL as follow,

$$\alpha = X_{\sqrt{(k_L)(IPL)}}$$
(S8)

Here, X is a physical constant taken for all remaining parameters $\left(=\frac{qL^2}{2\mu_{eff}k_BT}\right)$.

Also, Similar equation as Eq. (S7) has been derived by bartesaghi et al. by relating recombination and extraction rate at short circuit condition given as [3],

$$\theta = \frac{\gamma k_L G L^4}{\mu_{eff} V_{internal}^2} = \frac{k_R}{k_{sep}}$$
(S9)

Comparing Eq. (S7) and Eq. (S9), Neher et al. yields a relation between α and θ [2].

$$\theta = \left(\frac{qV_{\text{internal}}\alpha}{2k_BT}\right)^2 \tag{S10}$$

Here, we derive the relationship between the dependence of electrical performance parameter and θ to understand the recombination process using above equations. In order to qualitatively understand the *J-V* characteristics, mechanism of photo-generated charge carrier dissociation in terms of probability has derived as a function of k_r and k_{sep} which is given as [4]:

$$P = \frac{k_{sep}}{k_{sep} + k_R}$$
(S11)

Substituting the value of θ from Eq. S9, *P* can be rewritten as,

$$P = \frac{1}{1 + \left(\frac{qV_{\text{internal}}\alpha}{2k_BT}\right)^2} = \frac{4(k_BT)^2}{\left(1 + (V_{\text{internal}}\alpha})^2\right)q^2}$$
(S12)

References

- 1. U. Würfel, D. Neher, A. Spies and S. Albrecht, Nature communications, 2015, 6, 6951.
- 2. D. Neher, J. Kniepert, A. Elimelech and L. J. A. Koster, Scientific reports, 2016, 6, 24861.
- D. Bartesaghi, I. del Carmen Pérez, J. Kniepert, S. Roland, M. Turbiez, D. Neher and L. J. A. Koster, *Nature communications*, 2015, 6, 7083.
- 4. L. J. Koster, E. Smits, V. Mihailetchi and P. Blom, *Physical Review B*, 2005, 72, 085205.