## **Supporting Information**

## Brightly Luminescent and Color-Tunable Green-violet-emitting Halide Perovskite CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> Colloidal Quantum Dots: An Alternative for Lighting and Display Technology

Yonghao Liu, <sup>a</sup> Quan Xu, <sup>a</sup> Shuai Chang, <sup>b</sup> Zhao Lv, <sup>b</sup> Sheng Huang, <sup>b</sup> Feng Jiang, <sup>b</sup> Xin Zhang, <sup>b</sup> Gaoling Yang, <sup>c</sup> Xin Tong, <sup>a</sup> Shujuan Hao, <sup>a</sup> Yandong Ren, <sup>\*a</sup>

<sup>a</sup> School of physics and Electrical Information Engineering, Daqing Normal University, 163000, Daqing, China.
<sup>b</sup> Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, Zhongguancun South Street, Haidian District, Beijing 100081, China.
<sup>c</sup> Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel.

\* E-mail: <u>dqryd@163.com</u>

**Table S1.** X-ray diffraction data of MAPbBr<sub>3</sub> QDs. h, k and l are indices of a lattice plane. The "exp" and "cal" in symbol suffixes represent the experimental data from the XRD pattern and calculated results according to equations 1 and 2, respectively.  $\Delta$ : difference between experimental data and calculated data.

| hkl | $2\theta_{\rm exp}/^{\circ}$ | $2\theta_{\rm calc}/^{\circ}$ | $\Delta 2\theta/nm$ | $d_{\rm exp}/{\rm nm}$ | $d_{\rm calc}/{\rm nm}$ | ∆ <i>d</i> /nm |
|-----|------------------------------|-------------------------------|---------------------|------------------------|-------------------------|----------------|
| 100 | 15.440                       | 14.999280                     | 0.44072             | 0.57342                | 0.59016                 | 0.01674        |
| 110 | 21.640                       | 21.274460                     | 0.36554             | 0.41032                | 0.41730                 | 0.00698        |
| 200 | 30.600                       | 30.264750                     | 0.33525             | 0.29191                | 0.29508                 | 0.00317        |
| 210 | 34.260                       | 33.938690                     | 0.32131             | 0.26152                | 0.26393                 | 0.00241        |
| 211 | 37.639                       | 37.291985                     | 0.34702             | 0.23878                | 0.24093                 | 0.00215        |
| 220 | 43.660                       | 43.330110                     | 0.32989             | 0.20715                | 0.20865                 | 0.00150        |
| 300 | 46.300                       | 46.104449                     | 0.19555             | 0.19593                | 0.19672                 | 0.00079        |



Figure S1. TEM images of MAPbBr<sub>3</sub> QDs with varied amount of OLAM. (a) 10  $\mu$ L, (b) 50  $\mu$ L, (c) 80  $\mu$ L, and (d) 100  $\mu$ L. Scale bar: 50 nm.



Figure S2. Low-resolution TEM image of MAPbBr<sub>3</sub> QDs with 80  $\mu$ L OLAM. The corresponding High-resolution TEM image and particle size were listed in the inset.





Figure S4. Time-resolved PL decay and the fitting curve of a typical sample of MAPbBr<sub>3</sub> QDs with (a) 20  $\mu$ L and(b)100 $\mu$ LOLAMamount.



**Figure S5.** (a) Luminescent photographs of the corresponding MAPbBr<sub>3</sub> QDs under ambient light and the irradiation of UV lamp (in dark). (b) PLQY measurements of MAPbBr<sub>3</sub> QDs (20  $\mu$ L) in the form of colloidal. (c) CIE color coordinates corresponding to the MAPbBr<sub>3</sub> QDs. The blue star denotes the position of CIE chromaticity coordinates.



**Figure S6.** (a) PL spectra of MAPbBr<sub>3</sub> QDs after different days. (b) Excitation power dependent PL spectra of optimal OLAM content ( $20 \mu$ L).

Fitting functions for time-resolved PL spectra by a bi-exponential function:

$$I(t) = A_1 \exp(\frac{-t}{\tau_1}) + A_2 \exp(\frac{-t}{\tau_2}) + A_3 \exp(\frac{-t}{\tau_3})$$
(Seq 1)

Where I(t) is the PL intensity at time t, and  $A_i$  is the constants corresponding to the fractions of slow decay and long decay, respectively.