On the Simulation of Vibrationally Resolved Electronic Spectra of medium-

size molecules: the case of Styryl Substituted Bodipys

Mariagrazia Fortino^a, Julien Bloino^{b,c,*}, Elisabetta Collini^d, Luca Bolzonello^d, Mariachiara Trapani^e, Francesco Faglioni^aand Alfonso Pedone^{a,*}

^{a.} Universita' di Modena e Reggio Emilia, Modena, 41125, Italy.

^{b.}Consiglio Nazionale delle Ricerche Istituto di Chimica dei Composti OrganoMetallici, Pisa, I-56124, Italy.

^c Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.

^{d.} Università degli studi di Padova, Padova, 35131, Italy.

^{e.} CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, 98166, Messina, Italy

^{*}Corresponding authors: <u>alfonso.pedone@unimore.it;</u> julien.bloino@sns.it

Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

Table S1. Wavelength corresponding to the vertical excitation energies for **mono-bdp** system, computed by using several basis sets and two different density functionals.

	CAM-B3LYP		ωB97XD	
	6- 311G(d,p)	6-311+G(d,p)	6-311G(d,p)	SNSD
Vertical excitation energy (nm)	478	483	474	482
Transition dipole moment (D)	5.34	5.45	5.33	5.39

Table S2. Comparison between colors, expressed with the RGB model, simulated using normalized experimental spectra and computed at the TD AH|FCHT spectra with all ten functionls, for mono-bdp and bis-bdp system and their absorption and emission process. All the colors have been simulated using the VMS draw program, in which the color system used is SMPTE C and the reference for white is $x_n=0.312713$; $y_n=0.329016$.

	mono-bdp	(Abs)	mono-bdp	(Emi)	bis-bdp (Ab	s)	bis-bdp (E	mi)
exp	R:73		R:0		R:65		R:0	
	G:145		G:243		G:239		G:255	
	B:247		B:255		B:162		B:194	
B3LYP-D3	R: 104		R:0		R:0		R:0	
	G:152		G:255		G:203		G:255	
	B:225		B:223		B:255		B:0	
B3LYP	R:85		R:0		R:0		R:0	
	G:158		G:255		G:202		G:255	
	B:228		B:220		B:255		B:0	
CAM-B3LYP-D3	R:255		R:0		R:0		R:0	
	G:2		G:156		B:203		G:255	
	B:156		B:255		G:255		B:192	
CAM-B3LYP	R:255		R:0		R:0		R:0	
	G:8		G:158		G:193		G:255	
	B:160		B:255		B:255		B:192	
M062X	R:255		R:0		R:0		R:0	
	G:22		G:163		G:199		G:255	
	B:203		B:255		B:255		B:191	
MN15	R:148		R:0		R:28		R:0	
	G:100		G:224		G:165		G:255	
	B: 252		B:255		B:250		B:185	
PBE0	R:158		R:0		R:0		R:0	
	G:141		G:255		G:184		G:255	
	B:208		B:245		B:255		B:59	
PBE0-D3	R:144		R:0		R:0		R:0	
	G:138		G:255		G:184		G:255	
	B:217		B:247		B:255		B:65	
ωΒ97Χ	R:255		R:30		R:64		R:0	
	G:0		G:112		G:162		G:255	
	B:80		B:255		B:235		B:199	
ωB97XD	R:255		R:0		R:0		R:0	
	G:0		G:151		G:195		G:255	
	B:160		B:255		B:255		B:193	

Table S3. Stoke shift, vertical excitation and emission energies of **mono-bdp** and **bis-bdp** in methanol computed with the NEQ-LR-PCM and EQ-SS-PCM approaches respectively, using maximum bands of the spectraand by using the NEQ-SS-PCM and EQ-SS-PCM approaches respectively, along with experimental values.

	mono-bdp		
	absorption/NEQ-LR-PCM	emission/EQ-SS-PCM	Stoke Shift
exp values	596	605	9
CAM-B3LYP	478.2	504.3	26.1
CAM-B3LYP-D3	476.9	502.6	25.7
PBE0	509.1	536.6	27.5
PBEO	508	535.1	27.1
B3LYP	522.5	551.4	28.9
B3LYP-D3	520.3	549.1	28.8
ωΒ97Χ	466.8	488.9	22.1
ωB97XD	473.2	496.9	23.7
M06-2X	482.9	508.2	25.3
MN15	498.6	523.8	25.2

	mono-bdp		
	absorption/spectrum	emission/spectrum	Stoke Shift
exp values	596	605	9
CAM-B3LYP	565	570	5
CAM-B3LYP-D3	563	570	7
PBE0	604	610	6
PBE0	602	610	8
B3LYP	620	625	5
B3LYP-D3	615	623	8
ωB97X	550	550	0
ωB97XD	560	567	7
M06-2X	568	573	5
MN15	590	595	5

	mono-bdp		
	absorption/NEQ-SS-PCM	emission/EQ-SS-PCM	Stoke Shift
exp values	596	605	9
CAM-B3LYP	481	504.3	23.3
CAM-B3LYP-D3	451.1	502.6	51.5
PBEO	485.9	536.6	50.7
PBEO	484.3	535.1	50.8
B3LYP	500.6	551.4	50.8
B3LYP-D3	498.6	549.1	50.5
ωB97X	440.5	488.9	48.4
ωB97XD	447.3	496.9	49.6
M06-2X	457.1	508.2	51.1
MN15	472.3	523.8	51.5

bis-bdp		
absorption/NEQ-LR-PCM	emission/EQ-SS-PCM	Stoke Shift

exp values	729	751	22
CAM-B3LYP	572.5	624.6	52.1
CAM-B3LYP-D3	573.4	623.4	50
PBE0	640.5	673.5	33
PBEO	640.6	673.8	31.2
B3LYP	660.7	690.3	29.6
B3LYP-D3	660.4	689.2	28.8
ωB97X	541.9	590.4	48.5
ωB97XD	561.9	609.9	48
M06-2X	580.4	633.3	52.9
MN15	612.2	662.4	50.2

	bis-bdp		
	absorption/spectrum	emission/spectrum	Stoke Shift
exp values	729	751	22
CAM-B3LYP	695	700	5
CAM-B3LYP-D3	697	700	3
PBE0	782	785	3
PBE0	782	785	3
B3LYP	806	810	4
B3LYP-D3	806	810	4
ωB97X	652	658	6
ωB97XD	681	684	3
M06-2X	705	753	48
MN15	720	751	31

	bis-bdp		
	absorption/EQ-SS-PCN	Vemission/EQ-SS-PCM	Stoke Shift
exp values	729	751	22
CAM-B3LYP	546.9	624.6	77.7
CAM-B3LYP-D3	547.7	623.4	75.7
PBE0	618.6	673.5	54.9
PBE0	618.6	673.8	55.2
B3LYP	638.5	690.3	51.8
B3LYP-D3	637.8	689.2	51.4
ωB97X	514.2	590.4	76.2
ωB97XD	535	609.9	74.9
M06-2X	556.3	633.3	77
MN15	589	662.4	73.4

Figure S1. Comparison between the absorption and excitation spectra of (left) mono-bdp and (right) bis-bdp molecules.

Figure S2. a) Highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals of **mono-bdp** and **bis-bdp**. b) Electron density change ($\Delta \rho_{51-50}$) of mono-bdp and bis-bdp.

Figure S3 Representation of the normal modes (NM) giving significant contributions in the OPA and OPE spectra of **mono-bdp** and **bis-bdp**.

Example of G16 input file for computing vibronic spectra with reduced dimensionality in Cartesian coordinates.

```
%NProcShared=10
%Mem=12GB
%OldChk=bodipy_A.S0.frq.chk
#P Geom=Check Freq=(ReadFC,ReadNM,ReadFCHT)
bodipy_A / MN15.6-311G_d_p_: OPA TD AH|FC Cart
0 1
OPA TD AH FC
Print=(Matrix=JKC)
Spectrum=(Lower=-6000,Upper=+24000,HWHM=250.)
RedDim=(ClearLowFreq=50,BlockThresh=.6)
```

```
bodipy_A.S1.frq.chk
```

Cartesian Coordinates for the optimized structures of **mono-bdp** and **bis-bdp** systems in both the ground and excited states, computed at MN15/6-311G(d,p) level of theory:

mono-bdp S0

С	8.09711600	2.45453400	0.11353400
С	6.05398700	-1.08364400	-0.52503200
С	7.08812100	-2.02112700	-0.49011100
С	8.28390900	-1.32702700	-0.29568500
Н	4.99205900	-1.23788600	-0.65056000
Н	6.98113700	-3.09107000	-0.58713400
С	6.40025500	3.89832800	0.11576200
С	8.65606500	3.76195200	0.30440300
С	7.59312100	4.64101200	0.30615400
Н	7.65996900	5.71142900	0.43205100
В	5.72425400	1.44770500	-0.32583100
F	4.72979600	1.35209000	0.65774200
F	5.11018100	1.68297800	-1.56308000
Ν	6.55296400	0.15128800	-0.36502800
Ν	6.71483400	2.59273400	0.00180300
С	9.63099500	-1.97291600	-0.18830400
Н	10.24461000	-1.77299700	-1.07058300
Н	10.19326200	-1.61360500	0.67666400
Н	9.51048300	-3.05359800	-0.09900900
С	10.08875800	4.16216100	0.46873900
Н	10.48391400	3.84546000	1.43696800
Н	10.72819600	3.71641000	-0.29641300
Н	10.17265400	5.24787800	0.40564100
С	10.17371800	1.07636700	0.15249000
С	10.75364600	1.08797300	1.42146400
С	10.97532700	0.93289000	-0.98046700
С	12.13235400	0.95327700	1.55616000
Н	10.12197300	1.20020900	2.29647600
С	12.35498200	0.81017400	-0.84352500
Н	10.51476300	0.91917600	-1.96275100
С	12.93367300	0.81736800	0.42418800
Н	12.58064600	0.95767000	2.54271800
Н	12.97683600	0.70506500	-1.72472900
Н	14.00751000	0.71685500	0.52972800
С	5.03396700	4.36276000	0.03785800
Н	4.27477000	3.59469300	-0.05477300
С	4.69923200	5.66742100	0.07734800
н	5.49275900	6.40700600	0.16090600

С	3.34968700	6.22116100	0.01321900
С	3.19045200	7.61480400	0.01664500
С	2.19169000	5.42896600	-0.03797800
С	1.93424900	8.19661100	-0.05585700
Н	4.07035600	8.24752000	0.06555600
С	0.93244500	6.00327300	-0.08850500
Н	2.26815500	4.34826200	-0.01121300
С	0.79078100	7.39620600	-0.12138900
Н	1.82910600	9.27564000	-0.06987700
Н	0.05421700	5.37082900	-0.07542500
Ν	-0.47181900	8.02233200	-0.15462900
Н	-0.56307900	8.89029500	0.36415500
С	-1.59581300	7.72376600	-0.88800200
0	-2.60011600	8.40697300	-0.75461800
С	-1.54393500	6.57388100	-1.86029900
Н	-0.55451400	6.42963000	-2.29424200
Н	-1.83808800	5.64849300	-1.36020000
Н	-2.27157100	6.77963300	-2.64321700

mono-bdp-S1

С	7.92776900	0.06141500	-0.23568600
С	8.71686900	1.20045800	0.01053400
С	8.08830700	2.46558400	0.10812100
С	6.03659700	-1.04929200	-0.59406200
С	7.05890800	-2.00429400	-0.53071100
С	8.25798500	-1.33493600	-0.30105900
Н	4.97498000	-1.18653700	-0.74274000
н	6.93322300	-3.07285600	-0.62733300
С	6.39488400	3.93549900	0.10058500
С	8.66044000	3.78410000	0.29661800
С	7.60798300	4.66383900	0.29371500
Н	7.68420800	5.73539600	0.41001900
В	5.73691000	1.48108900	-0.37548500
F	4.71205600	1.37598600	0.58251100
F	5.13799500	1.73732600	-1.62162900
Ν	6.55319500	0.18170200	-0.41798400
Ν	6.72528100	2.59946600	-0.01154400
С	9.59017000	-1.99410300	-0.13236600
Н	10.23725700	-1.84083600	-1.00156900
Н	10.13416200	-1.60727000	0.73362500
Н	9.45124600	-3.06894900	-0.00278500
С	10.09946100	4.16881600	0.44141700
Н	10.50830900	3.86489800	1.40852900
Н	10.72556200	3.70642000	-0.32567100
Н	10.19353300	5.25286800	0.35940400
С	10.18575800	1.06728900	0.16175300
С	10.78096000	1.16876100	1.42234200
С	10.98781800	0.82257800	-0.95648100
С	12.15832100	1.02721400	1.56266600
Н	10.15648200	1.35411200	2.29044500
С	12.36605200	0.68881700	-0.81752800
Н	10.52298300	0.74100500	-1.93380200
С	12.95298600	0.78918500	0.44263200
Н	12.61132600	1.10231800	2.54447200
Н	12.98133200	0.50543800	-1.69081200
Н	14.02595100	0.68177100	0.55154500
С	5.07247100	4.39790300	0.01695200
Н	4.30836900	3.64180200	-0.12503900
С	4.71173700	5.72979300	0.10931700
Н	5.49784300	6.46786600	0.25105700
С	3.38429300	6.24697500	0.03374300
С	3.18193500	7.64640000	0.13978700
С	2.23110300	5.43826900	-0.12961300

С	1.92402400	8.19999600	0.05910400
Н	4.04369200	8.29061800	0.27705000
С	0.96922200	5.98890900	-0.19905200
Н	2.32679600	4.36033700	-0.17733400
С	0.79451700	7.38355200	-0.13307800
Н	1.79271800	9.27428200	0.12792100
Н	0.11038400	5.33596800	-0.27028300
Ν	-0.45701600	8.00016800	-0.18552300
Н	-0.53351800	8.89754900	0.28529200
С	-1.61426200	7.68079600	-0.87162600
0	-2.60018800	8.38256100	-0.71757000
С	-1.60876500	6.51008000	-1.81666100
Н	-0.64445900	6.36811500	-2.30486100
Н	-1.86454800	5.59249200	-1.28230900
Н	-2.38222700	6.69359300	-2.55998400

bis-bdp SO

С	7.97622900	-0.10208600	0.05614900
С	8.67134500	1.11117700	0.05923300
С	7.98420500	2.32893300	0.06374500
С	6.16633600	-1.40945000	0.06344400
С	7.30514000	-2.25046100	0.08574900
С	8.43626100	-1.45560600	0.08306000
Н	7.29522400	-3.33033200	0.10529600
С	6.18278700	3.64800800	0.05971300
С	8.45292900	3.67947300	0.03634800
С	7.32700800	4.48163600	0.03576000
Н	7.32412300	5.56155400	0.01624900
В	5.67226900	1.12094200	0.06135500
F	4.84835400	1.11074900	1.20067200
F	4.84783000	1.13656100	-1.07753800
Ν	6.58506500	-0.12243400	0.04826200
Ν	6.59319500	2.35831600	0.07400700
С	9.83975500	-1.97791500	0.10739300
Н	10.35420600	-1.79288800	-0.83887600
Н	10.43921500	-1.50805100	0.89040800
Н	9.82424800	-3.05499500	0.28078000
С	9.85966200	4.19286400	0.00949900
Н	10.37481300	4.00416000	0.95465500
Н	10.45454800	3.71961100	-0.77495700
Н	9.85061600	5.27010200	-0.16336600
С	10.15816000	1.10628300	0.05753300
С	10.85920800	1.28081600	1.25126100
С	10.85521100	0.92711500	-1.13785800
С	12.25121300	1.27220800	1.24945800
Н	10.30993100	1.42205400	2.17635400
С	12.24723500	0.92646500	-1.13936200
Н	10.30279300	0.78950400	-2.06162800
С	12.94595300	1.09701700	0.05422600
Н	12.79274500	1.40448600	2.17885600
Н	12.78566900	0.79059400	-2.07004200
Н	14.02970100	1.09340000	0.05293600
С	4.78590700	4.00870800	0.06749500
Н	4.08007900	3.18629600	0.09372000
С	4.35528500	5.28913100	0.04653400
Н	5.10099200	6.08217000	0.02320700
С	2.97782300	5.75437900	0.05194900
С	2.72371700	7.13590400	0.03786600
С	1.86308400	4.89532700	0.06852500
С	1.43595600	7.64343700	0.04136400
Н	3.56433300	7.82299100	0.02174300
С	0.57324000	5.38878400	0.07236900
Н	2.00735400	3.82042400	0.07536300

С	0.32968100	6.77724600	0.05942600
Н	1.27062900	8.71561700	0.03039700
Н	-0.26964700	4.70552300	0.08570100
Ν	-0.95500000	7.26713800	0.10725900
Н	-1.10054700	8.23015900	-0.16138800
Н	-1.70704400	6.64279500	-0.14826000
С	4.76711300	-1.76100300	0.05714800
Н	4.06674600	-0.93393100	0.03103200
С	4.32789600	-3.03847700	0.07958000
Н	5.06814900	-3.83652700	0.10551500
С	2.94726900	-3.49429200	0.07315600
С	2.68347300	-4.87386000	0.09805800
С	1.83866900	-2.62782900	0.04048100
С	1.39224900	-5.37252200	0.09124800
Н	3.51925400	-5.56664400	0.12095000
С	0.54546900	-3.11238600	0.03387400
Н	1.99041400	-1.55417600	0.01807400
С	0.29212500	-4.49891700	0.05916600
Н	1.21943900	-6.44340000	0.11091500
Н	-0.29245700	-2.42336000	0.00952100
Ν	-0.99687300	-4.97846400	0.09618400
Н	-1.73882700	-4.35753200	-0.19474000
Н	-1.14392500	-5.94845000	-0.14524300

bis-bdp-S1

С	7.99135800	2.32701500	0.05713500
С	6.16635400	-1.41985900	0.05742000
С	7.31466200	-2.25746200	0.09640300
С	8.44320800	-1.46898200	0.09877500
Н	7.30314000	-3.33793900	0.12516600
С	6.18148200	3.65636500	0.05304800
С	8.45874300	3.69203400	0.02019300
С	7.33492400	4.48720800	0.02132200
Н	7.33004200	5.56777600	-0.00571000
В	5.69683500	1.11966300	0.05217900
F	4.85552300	1.10559500	1.18760500
F	4.85988200	1.13878200	-1.08663800
Ν	6.60511200	-0.11477100	0.03706900
Ν	6.61237100	2.34865800	0.07076500
С	9.84874300	-1.98352900	0.14935200
Н	10.38039400	-1.81484100	-0.79127600
Н	10.43672600	-1.49868600	0.93290200
Н	9.83541100	-3.05785000	0.34234900
С	9.86735200	4.19858300	-0.02540400
Н	10.39518100	4.02578900	0.91662000
Н	10.45493600	3.71141000	-0.80779900
Н	9.86068400	5.27321100	-0.21707200
С	10.18853000	1.10625300	0.05980800
С	10.89574800	1.34053800	1.24183700
С	10.89701700	0.86768200	-1.12061200
С	12.28797300	1.33522400	1.24509100
Н	10.34527900	1.52632300	2.15871000
С	12.28925000	0.86478500	-1.12078600
Н	10.34750000	0.68511000	-2.03870000
С	12.98689900	1.09798200	0.06292800
Н	12.82705200	1.51562100	2.16812700
Н	12.82930500	0.68119800	-2.04262300
Н	14.07082200	1.09481700	0.06413800
С	4.81163800	4.00762900	0.06222400
Н	4.10839900	3.18228800	0.08559200
С	4.34823200	5.30012300	0.04752900
Н	5.07918700	6.10652400	0.02961000
С	2.97757600	5.71935300	0.05487100

С	2.67681200	7.10184500	0.04812400
С	1.87778800	4.82634900	0.06748500
С	1.38084100	7.56954900	0.05475200
Н	3.49799000	7.81190100	0.03666700
С	0.57933500	5.28122900	0.07363600
Н	2.05136800	3.75621800	0.06961300
С	0.29513500	6.66737400	0.06771000
Н	1.18176300	8.63581100	0.05010500
Н	-0.24469100	4.57569100	0.08268100
Ν	-0.98928800	7.11633200	0.09629700
Н	-1.18787900	8.09666400	-0.03645600
Н	-1.75748200	6.47332000	-0.02384300
С	4.79447800	-1.76258900	0.04141800
Н	4.09702400	-0.93300900	0.00147800
С	4.32185400	-3.05149400	0.07167200
Н	5.04652500	-3.86251300	0.11645200
С	2.94825600	-3.46054800	0.05199100
С	2.63558300	-4.83956100	0.10127000
С	1.85666000	-2.56004600	-0.01695800
С	1.33601500	-5.29698900	0.08546600
Н	3.45031100	-5.55526900	0.15264200
С	0.55481400	-3.00464600	-0.03419600
Н	2.03944400	-1.49233100	-0.06022400
С	0.25859100	-4.38735100	0.01681800
Н	1.12769500	-6.36072100	0.12543100
Н	-0.26274400	-2.29364300	-0.08820900
Ν	-1.02997400	-4.82486800	0.02180300
Н	-1.78802500	-4.18261700	-0.15391300
Н	-1.23299700	-5.80904400	-0.06912900